Skip to main content

Advertisement

Log in

Preparation of high-responsivity strontium–doped CuO/Si heterojunction photodetector by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the fabrication and characterization of a strontium-doped CuO/Si photodetector by chemical spray pyrolysis are demonstrated. The structural, electrical, and optical properties of CuO film and strontium-doped CuO film doped at doping concentrations of 3% and 6% are studied. The X-ray diffraction studies reveal that the deposited CuO film is crystalline with a monoclinic structure, and a new Cu4O3 phase was observed when the film was doped with strontium. The optical energy gap decreases from 2.5 to 2.25 eV after doping with Sr at 6%. The scanning electron microscopy investigation shows that the grain size decreases from 150 to 75 nm after doping with 6% strontium. The DC electrical conductivity of the film decreased after doping, and the activation energy was determined and found to be 0.52 and 0.75 eV for Sr dopant at 3% and 6%, respectively. The current–voltage characteristics of CuO/Si and CuO:Sr/Si heterojunction photodetectors under dark and light conditions are studied as a function of doping concentration. The photodetectors show rectification characteristics. The figures of merit of the photodetectors are measured. The responsivity (Rλ) of the photodetectors increases from 0.9 to 1.7 and 2.85 A/W at 650 nm after doping with strontium at doping concentrations of 3 and 6%, respectively. The maximum external quantum efficiency (EQE) and specific detectivity (D*) were 2.79 × 102% and 2.66 × 1012 Jones, respectively, for a CuO:Sr/Si photodetector doped with 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

(Not applicable).

References

  1. A. Alhattab, H. Alhattab, I. Takano, Investigation of structure and optical properties for copper oxide thin films on plastic substrate by helicon plasma DC magnetron sputtering technique. Adv. Mater. Sci. Eng. 2022, 1–9 (2022). https://doi.org/10.1155/2022/4357486

    Article  Google Scholar 

  2. A.N. Hussain, K.I. Hassoon, M.A. Hassan, Effect of annealing on copper oxide thin films and its application in solar cells. J. Phys.: Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1530/1/012140

    Article  Google Scholar 

  3. G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Deposition and characterization of copper oxide thin films. J. Phys.: Conf. Ser. 10(1), 182–185 (2005). https://doi.org/10.1088/1742-6596/10/1/045

    Article  CAS  Google Scholar 

  4. B.N. Roy, T. Wright, Electrical conductivity in polycrystalline copper oxide thin films. Cryst. Res. Technol. 31(8), 1039–1044 (1996). https://doi.org/10.1002/crat.2170310812

    Article  CAS  Google Scholar 

  5. C.R. Dhas, D. Alexander, A.J. Christy, K. Jeyadheepa, A.M.E. Raj, C.S. Raja, Preparation and characterization of CuO thin films prepared by spray pyrolysis technique for ethanol gas sensing application. Asian J. Appl. Sci. 7(8), 671–684 (2014). https://doi.org/10.3923/ajaps.2014.671.684

    Article  CAS  Google Scholar 

  6. Ş Baturay, A. Tombak, D. Batibay, Ocak, n-type conductivity of CuO thin films by metal doping. Appl. Surf. Sci. 477, 91–95 (2019). https://doi.org/10.1016/j.apsusc.2017.12.004

    Article  CAS  Google Scholar 

  7. G. Li, M. Jing, Z. Chen, B. He, M. Zhou, Z. Hou, Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance. RSC Adv. 7(17), 10376–10384 (2017). https://doi.org/10.1039/c6ra28724g

    Article  CAS  Google Scholar 

  8. K. Kumar, A. Chowdhury, Facile synthesis of CuO nanorods obtained without any template and/or surfactant. Ceram. Int. 43(16), 13943–13947 (2017). https://doi.org/10.1016/j.ceramint.2017.07.125

    Article  CAS  Google Scholar 

  9. H.J. Song, M.H. Seo, K.W. Choi, M.S. Jo, J.Y. Yoo, J.B. Yoon, High-performance copper oxide visible-light photodetector via grain-structure model. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-43667-9

    Article  Google Scholar 

  10. Z.M. Sadiq, M.A. Hassan, K.I. Hassoon, Preparation and characterization of CuO nanostructured thin films by chemical bath deposition. J. Phys.: Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2322/1/012088

    Article  Google Scholar 

  11. H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, J. Cuya, Fabrication and characterization of CuO-based solar cells. J. Mater. Sci. Res. 1, 138 (2012)

    CAS  Google Scholar 

  12. J. Meng, Z. Yang, L. Chen, H. Qin, F. Cui, Y. Jiang, X. Zeng, Energy storage performance of CuO as a cathode material for aqueous zinc ion battery. Mater. Today Energy (2020). https://doi.org/10.1016/j.mtener.2019.100370

    Article  Google Scholar 

  13. H. Zhang, K. Wang, L. Wang, H. Xie, W. Yu, Mesoporous CuO with full spectrum absorption for photothermal conversion in direct absorption solar collectors. Sol. Energy 201, 628–637 (2020). https://doi.org/10.1016/j.solener.2020.03.047

    Article  CAS  Google Scholar 

  14. N.S. Sadeq, M.A. Hassan, Z.G. Mohammadsalih, Preparation and study of properties of CdO: Al thin films prepared by chemical spraying. Int. J. Thin Film Sci. Technol. 11(1), 101–110 (2022). https://doi.org/10.18576/ijtfst/110113

    Article  Google Scholar 

  15. A. Mehtab, J. Ahmed, S.M. Alshehri, Y. Mao, T. Ahmad, Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology 33(14), 142001 (2022). https://doi.org/10.1088/1361-6528/ac43e7

    Article  Google Scholar 

  16. U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8(31), 17582–17594 (2018). https://doi.org/10.1039/C8RA01638K

    Article  CAS  Google Scholar 

  17. D.S. Murali, A. Subrahmanyam, Synthesis of low resistive p type Cu4O3 thin films by DC reactive magnetron sputtering and conversion of Cu4O3 into CuO by laser irradiation. J. Phys. D (2016). https://doi.org/10.1088/0022-3727/49/37/375102

    Article  Google Scholar 

  18. M.A. Cruz Almazán, E. Vigueras Santiago, R. López, S. Hernández López, V.H. Castrejón Sánchez, A. Esparza, C. Encarnación Gómez, Cu4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target. Rev. Mex. Fís. (2021). https://doi.org/10.31349/RevMexFis.67.495

    Article  Google Scholar 

  19. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges Wiss Göttingen 26, 98 (1918)

    Google Scholar 

  20. J.I. Langford, A.J.C. Wilson, “Scherrer after sixty years: a survey and some new results in the determination of crystallite size.” J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  21. R.A. Ismail, A.M. Mousa, M.A. Hassan, Critical methanol to ethanol volume ratio effect on the electrodeposition of DLC films. Optik 179, 29–36 (2019). https://doi.org/10.1016/j.ijleo.2018.10.170

    Article  CAS  Google Scholar 

  22. S. Gao, W. Li, J. Dai, Q. Wang, Z. Suo, Effect of transition metals doping on electronic structure and optical properties of β-Ga2O3. Mater. Res. Exp. (2021). https://doi.org/10.1088/2053-1591/abde10

    Article  Google Scholar 

  23. M. Jawad, R. Ismail, Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci.: Mater. Electron. 22, 1244–1247 (2011)

    CAS  Google Scholar 

  24. S.S. Hamd, A. Ramizy, R.A. Ismail, Preparation of novel B4C nanostructure/Si photodetectors by laser ablation in liquid. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-20685-8

    Article  Google Scholar 

  25. R.A. Ismail, N.F. Habubi, M.M. Abbod, Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis. Opt. Quant. Electron 48(10), 455 (2016). https://doi.org/10.1007/s11082-016-0725-5

    Article  CAS  Google Scholar 

  26. C. Zhang, B. Wang, R. Luo, C. Wu, S. Chen, J. Hu, C. Xie, L. Luo, Enhanced light trapping in conformal CuO/Si microholes array heterojunction for self-powered broadband photodetection. IEEE Electron Device Lett. 42(6), 883–886 (2021). https://doi.org/10.1109/LED.2021.3072042

    Article  CAS  Google Scholar 

  27. R.A. Ismail, Characteristics of p-Cu2O/n-Si heterojunction photodiode made by rapid thermal oxidation. JSTS: J. Semicond. Technol. Sci. 9(1), 51–54 (2009). https://doi.org/10.5573/JSTS.2009.9.1.051

    Article  Google Scholar 

  28. M.S. Jo, H.J. Song, B.J. Kim, Y.K. Shin, S.H. Kim, X. Tian, S.M. Kim, M.H. Seo, J.B. Yoon, Aligned CuO nanowire array for a high performance visible light photodetector. Sci. Rep. 12(1), 2284 (2022). https://doi.org/10.1038/s41598-022-06031-y

    Article  CAS  Google Scholar 

  29. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.L. Sun, Self-powered Ultrafast Broadband Photodetector based on p–n heterojunctions of CuO/Si Nanowire array. ACS Appl. Mater. Interfaces 6(23), 20887–20894 (2014). https://doi.org/10.1021/am5054338

    Article  CAS  Google Scholar 

  30. M.A. Jabr, A.M. Ali, R.A. Ismail, Preparation of high-performance p-CuO/n-Si heterojunction photodetector by laser-assisted chemical bath deposition: effect of laser wavelength. Ceram. Int. 49(7), 11442–11451 (2023). https://doi.org/10.1016/j.ceramint.2022.11.343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the department of Applied Sciences, University of Technology–Iraq for their logistic support.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

RAI and MAH conceived the presented idea. RAI and MAH supervised the finding of this work. MAH and RAI discussed the results and contributed equally to the final manuscript. MAH, MHM, and RAI conducted the experiments. RAI and MHM provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Raid A. Ismail.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

(Not applicable)

Consent to participate

(Not applicable)

Consent for publication

(Not applicable)

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A., Mohsin, M.H. & Ismail, R.A. Preparation of high-responsivity strontium–doped CuO/Si heterojunction photodetector by spray pyrolysis. J Mater Sci: Mater Electron 34, 912 (2023). https://doi.org/10.1007/s10854-023-10348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10348-3

Navigation