Skip to main content
Log in

A binder-free porous graphene/functionalized multiwalled carbon nanotubes composite containing nickel hydroxide as a supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, porous graphene (PG)/functionalized multiwalled carbon nanotubes (f-MWNTs) composite was first synthesized through a catalytic chemical vapor deposition (CCVD) followed by hydrothermal procedure. The prepared f-MWNTs/PG composite was then embedded into Ni foam (NF) via direct electrophoretic deposition, and Ni(OH)2 nanoplates were simultaneously deposited on the surfaces of both porous graphene and f-MWNTs through a simple electrochemical deposition. The obtained Ni(OH)2@f-MWNTs-PG deposit was characterized through XRD, FT-IR, Raman, DSC-TGA, BET, FE-SEM, and TEM techniques. These analyses results verified that β-Ni(OH)2 nanoplates uniformly anchored onto both components of the electrodeposited composite. The charge storage ability of the fabricated Ni(OH)2@f-MWNTs-NPG/NF was tested as a binder-free supercapacitor electrode through cyclic voltammetry, continuous charge–discharge cycling, and AC impedance techniques, and compared with pristine Ni(OH)2/Ni foam electrode. The specific capacities as high as 374.5 mAh g− 1 and 277 mAh g− 1 at the current loads of 0.5 and 10 A g–1 were respectively achieved for the prepared composite/NF electrode. Also, the cycling abilities of 94.8% and 77.8% were obtained after 5000 continuous charge–discharge cycles at 2 and 6 A g–1, respectively. The outstanding capacitive capability of the fabricated composite electrode was assigned to the synergetic contributions between the Ni(OH)2 nanoplates and porous graphene/functionalized MWNTs and their rational architecture in the composite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Poonam, A. Sharma, S.K. Arora, Tripathi, J. Energy Storage 21, 801 (2019)

    Article  Google Scholar 

  2. A. Muzaffar, M. Basheer Ahamed, K. Deshmukh, J. Thirumalai, Renew. Sustainable Energy Rev 101, 123 (2019)

    Article  CAS  Google Scholar 

  3. K.C. Ho, L.Y. Lin, J. Mater. Chem. A 7, 3516 (2019)

    Article  CAS  Google Scholar 

  4. K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09987-9

    Article  Google Scholar 

  5. R. Dubey, V. Guruviah, Ionics 25, 1419 (2019)

    Article  CAS  Google Scholar 

  6. Y. Gao, Nanoscale Res. Lett. 12, 387 (2017)

    Article  Google Scholar 

  7. Y.M. Volfkovich, Russian J. Electrochem. 57, 311 (2021)

    Article  CAS  Google Scholar 

  8. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46, 6816 (2017)

    Article  CAS  Google Scholar 

  9. Y. Jiang, J. Liu, Energy Environm. Mater 2, 30 (2019)

    Article  Google Scholar 

  10. C.C.H. Tran, J. Santos-Peña, C. Damas, Electrochim. Acta 335, 135564 (2020)

    Article  CAS  Google Scholar 

  11. S. Korkmaz, İA. Kariper, J. Energy Storage 27, 101038 (2020)

    Article  Google Scholar 

  12. M. Sarfraz, I. Shakir, J. Energy Storage 13, 103 (2017)

    Article  Google Scholar 

  13. S. Wu, K.S. Hui, K.N. Hui, K.H. Kim, J. Mater. Chem. A 4, 9113 (2016)

    Article  CAS  Google Scholar 

  14. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. Umbelino, M. De Gomes, Maaza, Ceram. Int. 42, 8385 (2016)

    Article  CAS  Google Scholar 

  15. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, Appl. Surf. Sci. 405, 329 (2017)

    Article  CAS  Google Scholar 

  16. P. Sharma, V. Kumar, J Electron. Mater 49, 3520 (2020)

    Article  CAS  Google Scholar 

  17. S. Yadav, A. Devi, J. Energy Storage 30, 101486 (2020)

    Article  Google Scholar 

  18. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater 16, 545 (2019)

    Article  Google Scholar 

  19. A. AL-Osta, V.V. Jadhav, M.K. Zate, R.S. Mane, K.N. Hui, S.-H. Han, Scripta Mater 99, 29 (2015)

    Article  CAS  Google Scholar 

  20. X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Chem. Engin J. 387, 124081 (2020)

    Article  CAS  Google Scholar 

  21. J. Cherusseri, N. Choudhary, K.S. Kumar, Y. Jung, J. Thomas, Nanoscale Horiz 4, 840 (2019)

    Article  CAS  Google Scholar 

  22. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui, K.N. Hui, J. Mater. Chem. A 1, 9046 (2013)

    Article  CAS  Google Scholar 

  23. Y. Mao, B. Zhou, S. Peng, J. Mater. Sci. : Mater. Electron. 31, 9457 (2020)

    CAS  Google Scholar 

  24. Q. He, T. Yang, X. Wang, P. Zhou, S. Chen, F. Xiao, P. He, L. Jia, T. Zhang, D. Yang, J. Mater. Sci. : Mater. Electron. 32, 3649 (2021)

    CAS  Google Scholar 

  25. J. Gou, S. Xie, J. Mater. Sci. : Mater. Electron. 30, 639 (2019)

    CAS  Google Scholar 

  26. M.M. Mahmoud Mohammed, D.-M. Chun, J. Mater. Sci. : Mater. Electron. 30, 17481 (2019)

    Google Scholar 

  27. W. Lan, G. Tang, Y. Sun, Y. Wei, P. La, Q. Su, E. Xie, J. Mater. Sci. : Mater. Electron. 27, 2741 (2016)

    CAS  Google Scholar 

  28. C. Huang, C. Hao, W. Zheng, S. Zhou, L. Yang, X. Wang, C. Jiang, L. Zhu, Appl. Surf. Sci. 505, 144589 (2020)

    Article  CAS  Google Scholar 

  29. J. Xu, L. Wu, Y. Liu, J. Zhang, J. Liu, S. Shua, X. Kang, Q. Song, D. Liu, F. Huang, Y. Hu, Surf. Interfaces 18, 100420 (2020)

    Article  CAS  Google Scholar 

  30. P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Electrochim. Acta 294, 383 (2019)

    Article  CAS  Google Scholar 

  31. B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, Energy Storage Mater 7, 32 (2017)

    Article  Google Scholar 

  32. X. Zang, C. Sun, Z. Dai, J. Yang, X. Dong, J. Alloys Compd. 691, 144 (2017)

    Article  CAS  Google Scholar 

  33. J. Li, H. Hao, J. Wang, W. Li, W. Shen, J. Alloys Compd. 782, 516 (2019)

    Article  CAS  Google Scholar 

  34. W. He, H. Qiu, J. Meng, B. Liu, J. Cui, Y. Zhang, J. Alloys Compd. 788, 183 (2019)

    Article  CAS  Google Scholar 

  35. M. Zhang, T. Ma, Y. Wang, D. Pan, J. Xie, J. Mater. Sci. : Mater. Electron. 29, 6991 (2018)

    CAS  Google Scholar 

  36. C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang, Electrochim. Acta 173, 399 (2015)

    Article  CAS  Google Scholar 

  37. F. Eylul Sara, O. Ugur Unal, J. Solid State Electrochem. 23, 1409 (2019)

    Article  Google Scholar 

  38. Y. Zhou, M. Liu, H. Yang, Q. Liu, W. Li, C.-M. Yu, Synth. Met 267, 116452 (2020)

    Article  CAS  Google Scholar 

  39. M. Aghazadeh, Anal. Bioanal Electrochem. 10, 554 (2018)

    CAS  Google Scholar 

  40. C. Hana, W. Cao, H. Si, Y. Wu, K. Liu, H. Liu, S. Sang, Q. Wu, Electrochim. Acta 322, 134747 (2019)

    Article  Google Scholar 

  41. B. Kurt, U. Ümit, Demir, Electrochim. Acta 302, 109 (2019)

    Article  Google Scholar 

  42. S.M. Youssry, M.N. El-Nahass,. Matsuda, R. Kumar. I.S. El-Hallag. W. KianTan. A. J. Energy Storage 30, 101485 (2020)

    Article  Google Scholar 

  43. V. Lee, L. Whittaker, C. Jaye, K.M. Baroudi, D.A. Fischer, S. Banerjee, Chem. Mater. 21, 3905 (2009)

    Article  CAS  Google Scholar 

  44. J.R. Lake, A. Cheng, S. Selverston, Z. Tanaka, J. Koehne, M. Meyyappan, B. Chen, J. Vacuum Sci. Technol. B 30, D118 (2012)

    Article  Google Scholar 

  45. M.S. Wu, Y.P. Lin, C. Lin, J.T. Lee, J. Mater. Chem. 22, 2442 (2012)

    Article  CAS  Google Scholar 

  46. H.A. Shirkhanloo, H. Khaligh, Z. Mousavi, A. Rashidi, Microchem J. 130, 245 (2017)

    Article  CAS  Google Scholar 

  47. R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Appl. Surf. Sci. 256, 4447 (2010)

    Article  CAS  Google Scholar 

  48. B.P. Vinayan, R. Nagar, V. Raman, N. Rajalakshmi, K.S. Dhathathreyan, S. Ramaprabhu, J. Mater. Chem. 22, 9949 (2012)

    Article  CAS  Google Scholar 

  49. T.F. Emiru, D.W. Ayele, Egyp J. Basic. Appl. Sci. 4, 74 (2017)

    Google Scholar 

  50. C. Murli, S.M. Sharma, S.K. Kulshreshtha, S.K. Sikka, Phys. B 307, 111 (2001)

    Article  CAS  Google Scholar 

  51. A.A. Khaleed, A. Bello, J.K. Dangbegnon, M.J. Madito, O. Olaniyan, F. Barzegar, K. Makgop, K.O. Oyedotun, B.W. Mwakikunga, S.C. Ray, N. Manyal, J. Alloys Compd. 721, 80 (2017)

    Article  CAS  Google Scholar 

  52. L. Abbasi, K. Hedayati, D. Ghanbari, J. Mater. Sci. : Mater. Electron. 32, 14477 (2021)

    CAS  Google Scholar 

  53. A.B. Andrade, N.S. Ferreira, M.E.G. Valerio, RSC Adv. 7, 26839 (2017)

    Article  CAS  Google Scholar 

  54. L. Mao, C. Guan, X. Huang, Q. Ke, Y. Zhang, J. Wang, Electrochim. Acta 196, 653 (2016)

    Article  CAS  Google Scholar 

  55. W. He, G. Zhao, P. Sun, P. Hou, L. Zhu, T. Wang, L. Li, X. Xu, T. Zhai, Nano Energy 56, 207 (2019)

    Article  CAS  Google Scholar 

  56. A.A. Khaleed, A. Bello, J.K. Dangbegnon, M.J. Madito, O. Olaniyan, F. Barzegar, K. Makgop, K.O. Oyedotun, B.W. Mwakikung, S.C. Ray, N. Manyala, J. Alloys Compd. 721, 80 (2017)

    Article  CAS  Google Scholar 

  57. H. Yan, J. Bai, J. Wang, X. Zhang, B. Wang, Q. Liu, L. Liu, CrystEngComm 15, 10007 (2013)

    Article  CAS  Google Scholar 

  58. H. Wang, H. Sanchez Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2010)

    Article  CAS  Google Scholar 

  59. H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo, X. Wang, J. Mater. Chem. A 3, 19545 (2015)

    Article  CAS  Google Scholar 

  60. R. Wang, A. Jayakumar, C. Xu, J.-M. Lee, ACS Sustainable Chem. Eng 4, 3736 (2016)

    Article  CAS  Google Scholar 

  61. M. Aghazadeh, H. Foratirad, Synth. Met 285, 117009 (2022)

    Article  CAS  Google Scholar 

  62. Y. Gogotsi, R.M. Penner, ACS Nano 12, 2081 (2018)

    Article  CAS  Google Scholar 

  63. M. Aghazadeh, H. Foratirad, Ionics 28, 2389 (2022)

    Article  CAS  Google Scholar 

  64. L. Li, J. Qin, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, P. Yang, Sci. Rep 7, 43413 (2017)

    Article  CAS  Google Scholar 

  65. Y. Fu, Y. Zhou, Q. Peng, C. Yu, Z. Wu, J. Sun, J. Zhu, X. Wang, J. Power Sources 402, 43 (2018)

    Article  CAS  Google Scholar 

  66. M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo, W. Ding, Nano Res. 11, 216 (2018)

    Article  CAS  Google Scholar 

  67. Z. Ji, N. Li, Y. Zhang, M. Xie, X. Shen, L. Chen, K. Xu, G. Zhu, J. Colloid Interface Sci. 542, 392 (2019)

    Article  CAS  Google Scholar 

  68. S. Jeong, J. Yun, N.M. Shinde, K.S. Kim, K.H. Kim, Int. J. Electrochem. Sci. 15, 1310 (2020)

    Article  CAS  Google Scholar 

  69. D. Wang, A. Wei, L. Tian, A. Mensah, D. Li, Y. Xu, Q. Wei, Appl. Surf. Sci. 483, 593 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MA. Methodology: MA. Formal analysis and investigation: HF. Writing–original draft preparation: HF. Writing–review and editing: MA. Funding acquisition: MA. Resources: HF. Supervision: MA.

Corresponding author

Correspondence to Mustafa Aghazadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Foratirad, H. A binder-free porous graphene/functionalized multiwalled carbon nanotubes composite containing nickel hydroxide as a supercapacitor electrode. J Mater Sci: Mater Electron 34, 1056 (2023). https://doi.org/10.1007/s10854-023-10338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10338-5

Navigation