Skip to main content
Log in

Rapid preparation and adsorption properties of Uio-66/cellulose composite hydrogels

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Industrial wastewater has become one of the main factors affecting human health, and wastewater purification has become an important subject of academic research. Therefore, we report a Uio-66/cellulose composite hydrogel with the advantages of simple preparation, excellent adsorption performance, and high adsorption efficiency. Cellulose hydrogels have the characteristics of simple preparation and excellent adsorption. As the metal organic framework, Uio-66 has excellent adsorption to dyes. It combined with cellulose hydrogel can improve the adsorption performance of the composite hydrogel. Uio-66 can not only optimize the adsorption performance of cellulose hydrogels, but also improve the adsorption rate of composite hydrogels. By changing the amount of Uio-66, we studied the adsorption of methylene blue by composite hydrogel under different initial concentration, temperature, and pH. At room temperature, when the adding amount of Uio-66 was 10% of the mass of cellulose, the composite hydrogel had the best adsorption performance. The adsorption rate was significantly improved, and the maximum adsorption amount was 764.95 mg g−1, which is much better than the cellulose hydrogel without Uio-66, and the time to reach adsorption equilibrium was also significantly shortened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings of the present report cannot be shared at this time as the data also form part of an ongoing study.

References

  1. L. Sun, S.G. Wan, W.S. Luo, Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour. Technol. 140, 406–413 (2013)

    Article  CAS  Google Scholar 

  2. J.L. Ren, Q.Q. Dai, H.Q. Zhong, X.X. Liu, L. Meng, X.H. Wang, F.X. Xin, Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength. Cellulose 25, 4537–4549 (2018)

    Article  CAS  Google Scholar 

  3. E. Yildirir, L. Ballice, Supercritical water gasification of wet sludge from biological treatment of textile and leather industrial wastewater. J. Supercrit. Fluid. 146, 100–106 (2019)

    Article  CAS  Google Scholar 

  4. P. Sirajudheen, N.C. Poovathumkuzhi, S. Vigneshwaran, B.M. Chelaveettil, S. Meenakshi, Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water-A comprehensive review. Carbohydr. Polym. 273, 118604 (2021)

    Article  CAS  Google Scholar 

  5. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci-China. 65, 201–222 (2018)

    Article  CAS  Google Scholar 

  6. S. Varjani, P. Rakholiya, H.Y. Ng, S. You, J.A. Teixeira, Microbial degradation of dyes: An overview. Bioresour. Technol. 314, 123728 (2020)

    Article  CAS  Google Scholar 

  7. M.W. Cao, Y. Shen, Z.S. Yan, Q. Wei, T. Jiao, Y.T. Shen, Y.C. Han, Y.L. Wang, S.J. Wang, Y.Q. Xia, T.T. Yue, Extraction-like removal of organic dyes from polluted water by the graphene oxide/PNIPAM composite system. Chem. Eng. J. 405, 126647 (2021)

    Article  CAS  Google Scholar 

  8. Q. Liu, Y. Li, H. Chen, J. Lu, G. Yu, M. Moslang, Y. Zhou, Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 382, 121040 (2020)

    Article  CAS  Google Scholar 

  9. M.N. Ahamad, M.S. Khan, M. Shahid, M. Ahmad, Metal organic frameworks decorated with free carboxylic acid groups: topology, metal capture and dye adsorption properties. Dalton. Trans. 49, 14690–14705 (2020)

    Article  CAS  Google Scholar 

  10. Y.C. Sun, T.T. Wang, C.H. Han, X.T. Lv, L. Bai, X.Y. Sun, P.F. Zhang, Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: selective adsorption and mechanism studies. Bioresour. Technol. 344, 126186 (2022)

    Article  CAS  Google Scholar 

  11. L.P. Sun, Y.H. Mo, L. Zhang, A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: state-of-the-art and future prospects. Chemosphere 294, 133801 (2022)

    Article  CAS  Google Scholar 

  12. L.W. Chen, Y.Y. Zhu, Y.M. Cui, R. Dai, Z.H. Shan, H. Chen, Fabrication of starch-based high-performance adsorptive hydrogels using a novel effective pretreatment and adsorption for cationic methylene blue dye: behavior and mechanism. Chem. Eng. J. 405, 126953 (2021)

    Article  CAS  Google Scholar 

  13. Y. Wang, Y. Zheng, G. Zhao, S. Liu, J. Hu, X. Long, Z. Xiao, H. Zhang, F. Jiao, Co-precipitation synthesis of reusable ZnAl-CLDH/ZIF-8 heterojunction for enhanced photodegradation of organic dye. J. Mater. Sci.: Mater. Electron. 32, 28051–28064 (2021)

    CAS  Google Scholar 

  14. H. Mirhosseini, T. Shamspur, A. Mostafavi, G. Sargazi, A novel ultrasonic assisted-reverse micelle procedure to synthesize Eu-MOF nanostructure with high sono/sonophotocatalytic activity: a systematic study for brilliant green dye removal. J. Mater. Sci.: Mater. Electron. 32, 22840–22859 (2021)

    CAS  Google Scholar 

  15. S. Cui, Z. Ye, C. Qian, J. Liu, J. Jin, Q. Liang, C. Liu, S. Xu, Z. Li, Construction of ternary Ag/AgBr@UIO-66(NH2) heterojunctions with enhanced photocatalytic performance for the degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 29, 15138–15146 (2018)

    CAS  Google Scholar 

  16. N. Peng, D.N. Hu, J. Zeng, Y. Li, L. Liang, C.Y. Chang, Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. Acs. Sustain. Chem. Eng. 4, 7217–7224 (2016)

    Article  CAS  Google Scholar 

  17. E. Alipour, S. Norouzi, H. Yousefzadeh, R. Mohammadi, M.S. Amini-Fazl, Synthesis of chitosan-grafted poly-acrylic acid (CTS-g-PAA) hydrogel and its potential application in biosensors for signal enhancing and bioanalysis. J. Mater. Sci.: Mater. Electron. 32, 24812–24824 (2021)

    CAS  Google Scholar 

  18. T. Hu, Q.Z. Liu, T.T. Gao, K.J. Dong, G. Wei, J.S. Yao, Facile preparation of tannic acid-poly(vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega 3, 7523–7531 (2018)

    Article  CAS  Google Scholar 

  19. S.F. He, F. Zhang, S.Z. Cheng, W. Wang, Synthesis of sodium acrylate and acrylamide copolymer/GO hydrogels and their effective adsorption for Pb2+ and Cd2+. Acs. Sustain. Chem. Eng. 4, 3948–3959 (2016)

    Article  CAS  Google Scholar 

  20. C.Z. Bai, X.J. Huang, F. Xie, X.P. Xiong, Microcrystalline cellulose surface-modified with acrylamide for reinforcement of hydrogels. Acs. Sustain. Chem. Eng. 6, 12320–12327 (2018)

    Article  CAS  Google Scholar 

  21. S. Bhaladhare, D. Das, Cellulose: a fascinating biopolymer for hydrogel synthesis. J. Mater. Chem. B. 10, 1923–1945 (2022)

    Article  CAS  Google Scholar 

  22. Y. Chen, Z. Xiang, D. Wang, J. Kang, H. Qi, Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. Rsc. Adv. 10, 23936–23943 (2020)

    Article  CAS  Google Scholar 

  23. C. Kuang, P. Tan, A. Bahadur, S. Iqbal, M. Javed, M.A. Qamar, M. Fayyaz, G. Liu, O.M. Alzahrani, E. Alzahrani, A. Farouk, Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgel. J. Mater. Sci.: Mater. Electron. 33, 9930–9940 (2022)

    CAS  Google Scholar 

  24. M.S. Embaby, S.D. Elwany, W. Setyaningsih, M.R. Saber, The adsorptive properties of UiO-66 towards organic dyes: a record adsorption capacity for the anionic dye Alizarin Red S. Chin. J. Chem. Eng. 26, 731–739 (2018)

    Article  CAS  Google Scholar 

  25. Z.C. Ji, H.Y. Sun, Y.F. Zhu, D.D. Zhang, L.H. Wang, F.Y. Dai, Y.P. Zhao, L. Chen, Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism. Microporous Mesoporous Mat. 328, 111433 (2021)

    Article  CAS  Google Scholar 

  26. X. Hou, L. Wu, L. Gu, G. Xu, H. Du, Y. Yuan, Maximizing the photocatalytic hydrogen evolution of Z-scheme UiO-66-NH2@Au@CdS by aminated-functionalized linkers. J. Mater. Sci.: Mater. Electron. 30, 5203–5211 (2019)

    CAS  Google Scholar 

  27. X. Tianliang, L. Yingchao, L. Weizun, J. Meiting, Photocatalytic degradation of organic pollutants by MOFs based materials: a review. Chin. Chem. Lett. 32, 2975–2984 (2021)

    Article  Google Scholar 

  28. C. Zhao, G. Wu, Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution. Chem. Ind. Eng. 38, 1775–1784 (2019)

    Google Scholar 

  29. D.X. Zhao, C. Cai, Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: a discussion of the mechanism. Dyes Pigments 185, 108957 (2021)

    Article  CAS  Google Scholar 

  30. L.Y. Wang, H. Xu, J.K. Gao, J.M. Yao, Q.C. Zhang, Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coordin. Chem. Rev. 398, 213016 (2019)

    Article  Google Scholar 

  31. M.R.M. Shafiee, J. Parhizkar, S. Radfar, Removal of Rhodamine B by g-C3N4/Co3O4/MWCNT composite stabilized in hydrogel via the synergy of adsorption and photocatalysis under visible light. J. Mater. Sci.: Mater. Electron. 30, 12475–12486 (2019)

    CAS  Google Scholar 

  32. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  Google Scholar 

  33. X.L. Zhao, S.L. Liu, Z. Tang, H.Y. Niu, Y.Q. Cai, W. Meng, F.C. Wu, J.P. Giesy, Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water. Sci Rep-Uk. 5, 11849 (2015)

    Article  Google Scholar 

  34. Y.H. Teow, L.M. Kam, A.W. Mohammad, Synthesis of cellulose hydrogel for copper (II) ions adsorption. J. Environ. Chem. Eng. 6, 4588–4597 (2018)

    Article  CAS  Google Scholar 

  35. N. Harada, Y. Mitsukami, H. Uyama, Preparation and characterization of water-swellable hydrogel-forming porous cellulose beads. Polymer 215, 123381 (2021)

    Article  CAS  Google Scholar 

  36. C.Y. Li, Y.Y. Yan, Q.Z. Zhang, Z.B. Zhang, L.H. Huang, J.X. Zhang, Y.Q. Xiong, S.Z. Tan, Adsorption of Cd2+ and Ni2+ from Aqueous Single Metal Solutions on Graphene Oxide-Chitosan-Poly(vinyl alcohol) Hydrogels (vol 35, pg 4481, 2019). Langmuir 35, 9323–9333 (2019)

    Article  CAS  Google Scholar 

  37. C. Wang, J. Liu, Q. Li, S. Chen, Self-healing hydrogel toward metal ion rapid removal via available solar-driven fashion. Ind. Eng. Chem. Res. 58, 17067–17074 (2019)

    Article  CAS  Google Scholar 

  38. H.J. Dai, Y. Chen, L. Ma, Y.H. Zhang, B. Cui, Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: characterization and application for methylene blue adsorption. Int. J. Biol. Macromol. 191, 129–138 (2021)

    Article  CAS  Google Scholar 

  39. B. Gao, H.R. Yu, J.Y. Wen, H.J. Zeng, T. Liang, F. Zuo, C.J. Cheng, Super-adsorbent poly(acrylic acid)/laponite hydrogel with ultrahigh mechanical property for adsorption of methylene blue. J. Environ. Chem. Eng. 9, 106346 (2021)

    Article  CAS  Google Scholar 

  40. V.V. Tran, D. Park, Y.C. Lee, Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 25, 24569–24599 (2018)

    Article  Google Scholar 

  41. Z.F. Akl, E.G. Zaki, S.M. ElSaeed, Green hydrogel-biochar composite for enhanced adsorption of uranium. ACS Omega 6, 34193–34205 (2021)

    Article  CAS  Google Scholar 

  42. C.S. Fonseca, C. Rosa, T.J. Lopes, G. Rosa, Sewage sludge in phenol and methylene blue adsorption: a miniproject for teaching sustainability. J. Chem. Educ. 97, 1087–1092 (2020)

    Article  CAS  Google Scholar 

  43. C.L. Jiang, X.H. Wang, B.X. Hou, C. Hao, X. Li, J.B. Wu, Construction of a lignosulfonate-lysine hydrogel for the adsorption of heavy metal ions. J. Agric. Food Chem. 68, 3050–3060 (2020)

    Article  CAS  Google Scholar 

  44. S. Park, Y. Oh, J. Yun, E. Yoo, D. Jung, K.K. Oh, S.H. Lee, Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 27, 2757–2773 (2020)

    Article  CAS  Google Scholar 

  45. D. Kundu, S.K. Mondal, T. Banerjee, Development of beta-cyclodextrin-cellulose/hemicellulose-based hydrogels for the removal of Cd(II) and Ni(II): synthesis, kinetics, and adsorption aspects. J. Chem. Eng. Data 64, 2601–2617 (2019)

    Article  CAS  Google Scholar 

  46. J.M. Wu, Z.X. Feng, C.H. Dong, P. Zhu, J.H. Qiu, L.X. Zhu, Synthesis of sodium carboxymethyl cellulose/poly(acrylic acid) microgels via visible-light-triggered polymerization as a self-sedimentary cationic basic dye adsorbent. Langmuir 38, 3711–3719 (2022)

    Article  CAS  Google Scholar 

  47. X.W. Peng, L.X. Zhong, J.L. Ren, R.C. Sun, Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J. Agr. Food Chem. 60, 3909–3916 (2012)

    Article  CAS  Google Scholar 

  48. Z.H. Liu, Q. Wang, X.J. Huang, X.R. Qian, Surface functionalization of graphene oxide with hyperbranched polyamide-amine and microcrystalline cellulose for efficient adsorption of heavy metal ions. ACS Omega 7, 10944–10954 (2022)

    Article  CAS  Google Scholar 

  49. J.P. Yang, K.L. Wang, Z.X. Lv, W.J. Li, K.M. Luo, Z. Cao, Facile preparation and dye adsorption performance of poly(N-isopropylacrylamide-co-acrylic acid)/molybdenum disulfide composite hydrogels. ACS Omega 6, 28285–28296 (2021)

    Article  CAS  Google Scholar 

  50. Y.F. Yan, H. Han, Y.J. Dai, H. Zhu, W.H. Liu, X. Tang, W. Gan, H. Li, Nb2CTx MXene nanosheets for dye adsorption. ACS. Appl. Nano Mater. 4, 11763–11769 (2021)

    Article  CAS  Google Scholar 

  51. S.K. Lahiri, L. Liu, Fabrication of a nanoporous silica hydrogel by cross-linking of SiO2-H3BO3-hexadecyltrimethoxysilane for excellent adsorption of azo dyes from wastewater. Langmuir 37, 8753–8764 (2021)

    Article  CAS  Google Scholar 

  52. A. M. Aljeboree, N. D. Radia, L. S. Jasim, A. A. Alwarthan, M. M. Khadhim, A. Washeel Salman and A. F. Alkaim, Synthesis of a new nanocomposite with the core TiO2/hydrogel: Brilliant green dye adsorption, isotherms, kinetics, and DFT studies. J. Ind. Eng. Chem. 109, 475–485 (2022)

  53. S. Sharma, G. Sharma, A. Kumar, T. S. AlGarni, M. Naushad, Z. A. ALOthman and F. J. Stadler, Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J Hazard Mater. 421, 126729 (2022)

  54. N. Kumar, H. Mittal, V. Parashar, S.S. Ray, J.C. Ngila, Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. Rsc. Adv. 6, 21929–21939 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support of Shandong Institute of Inorganic Nonmetallic Materials.

Funding

We are thankful for the financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Qinglan Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Contributions

Lixi Wang conceived and designed the experiments, and supervised the complete study. Jianlin Huang prepared the samples, performed the experiments, and collected the data. All the authors analyzed the data, wrote the manuscript, and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lixi Wang.

Ethics declarations

Conflict of interest

The authors of the present article declare that there are no potential conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that we have given due consideration to the protection of intellectual property associated with this work and there are no impediments to publication, including the timing of publication, concerning intellectual property.

Ethical approval

This manuscript does not contain any stuff which needed ethical approval and the research does not involve human participants and/or animals.

Informed consent

There is no ‘informed consent’ applicable to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 127 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Ren, Q., Wang, L. et al. Rapid preparation and adsorption properties of Uio-66/cellulose composite hydrogels. J Mater Sci: Mater Electron 34, 1080 (2023). https://doi.org/10.1007/s10854-023-10332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10332-x

Navigation