Skip to main content
Log in

Modification of NiCoP nanocages anodes using epoxy-functionalized silane to improve electrochemical performance in lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bimetallic NiCoP nanoparticle is one of the most promising anode materials for lithium-ion batteries (LIBs). However, its cycling stability is poor due to its high tendency toward aggregation originated from the large cohesive forces. To overcome this drawback, a unique NiCoP nanocages is prepared and modified with epoxy-functionalized silane KH580 by a simple hydrolysis method. This strategy involves the significant improvement of the dispersity of the NiCoP nanocages during charge/discharge processes. From the electrochemical measurements, KH580-NiCoP nanocages-0.5 wt% exhibit higher lithium storage performance (505.3 mA h g−1 at 0.1 A g−1), excellent cyclability (367 mA h g−1 after 200 cycles at 0.5 A g−1), and outstanding rate capacity (280.8 mA h g−1 at 1 A g−1). This excellent electrochemical performance can be attributed to the improved electron transfer and structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020)

    Article  CAS  Google Scholar 

  2. T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019)

    Article  CAS  Google Scholar 

  3. A. Manthiram, An outlook on lithium ion battery technology. ACS Cent. Sci 3, 1063–1069 (2017)

    Article  CAS  Google Scholar 

  4. Q. Wang, B. Liu, Y. Shen, J. Wu, Z. Zhao, C. Zhong, W. Hu, Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci (Weinh) 8, e2101111 (2021)

    Article  Google Scholar 

  5. Y.-N. Zhang, Y. Zhou, J. Su, Y.-F. Long, X.-Y. Lv, H.-X. Kuai, Y.-X. Wen, CoFe hydroxyoxalate nanosheets chemically bonded with reduced graphene oxide as high-performance anode for lithium-ion batteries. Appl. Surf. Sci 585, 152763 (2022)

    Article  CAS  Google Scholar 

  6. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  7. S. Li, J.-H. Lee, S.M. Hwang, J.-B. Yoo, H. Kim, Y.-J. Kim, Natural activation of CuO to CuCl2 as a cathode material for dual-ion lithium metal batteries. Energy Storage Mater 41, 466–474 (2021)

    Article  CAS  Google Scholar 

  8. H. Liang, X. Gong, L. Jia, F. Chen, Z. Rao, S. Jing, P. Tsiakaras, Highly efficient Li-O2 batteries based on self-standing NiFeP@NC/BC cathode derived from biochar supported prussian blue analogues. J. Electroanal. Chem. 867, 114124 (2020)

    Article  CAS  Google Scholar 

  9. L. Yue, J. Liang, Z. Wu, B. Zhong, Y. Luo, Q. Liu, T. Li, Q. Kong, Y. Liu, A.M. Asiri, X. Guo, X. Sun, Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A 9, 11879–11907 (2021)

    Article  CAS  Google Scholar 

  10. C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater 19, 2465–2468 (2007)

    Article  CAS  Google Scholar 

  11. J. Smajic, A. Alazmi, S.P. Patole, M.F.J. Pedro, Costa, Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes. RSC Adv 7, 39997–40004 (2017)

    Article  CAS  Google Scholar 

  12. M. Wang, J. Zhong, Z. Zhu, A. Gao, F. Yi, J. Ling, J. Hao, D. Shu, Hollow NiCoP nanocubes derived from a prussian blue analogue self-template for high-performance supercapacitors. J. Alloy Compd 893, 162344 (2022)

    Article  CAS  Google Scholar 

  13. Y. Yang, J.-F. Lu, H. Yu, Y.-N. Zhang, Y. Huang, Y.-J. Huang, Y.-F. Long, J. Su, X.-Y. Lv, Y.-X. Wen, Hydrodynamic force-induced rapid assembly of mesoporous MnO/C hollow microtube as an anode material for lithium-ion batteries. Ceram. Int 45, 22281–22291 (2019)

    Article  CAS  Google Scholar 

  14. C. Wang, Y. Qian, J. Yang, S. Xing, X. Ding, Q. Yang, Ternary NiCoP nanoparticles assembled on graphene for high-performance lithium-ion batteries and supercapacitors. RSC Adv 7, 26120–26124 (2017)

    Article  CAS  Google Scholar 

  15. L. Sun, T. Ma, J. Zhang, X. Guo, C. Yan, X. Liu, Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochim. Acta 321, 134672 (2019)

    Article  CAS  Google Scholar 

  16. J. Duan, Y. Zou, Z. Li, B. Long, Preparation of MOF-derived NiCoP nanocages as anodes for lithium ion batteries. Powder Technol 354, 834–841 (2019)

    Article  CAS  Google Scholar 

  17. W. Pang, A. Fan, Y. Guo, D. Xie, D. Gao, NiCoP with dandelion-like arrays anchored on nanowires for electrocatalytic overall water splitting. ACS Omega 6, 26822–26828 (2021)

    Article  CAS  Google Scholar 

  18. C. Ghoroi, X. Han, D. To, L. Jallo, L. Gurumurthy, R.N. Davé, Dispersion of fine and ultrafine powders through surface modification and rapid expansion. Chem. Eng. Sci 85, 11–24 (2013)

    Article  CAS  Google Scholar 

  19. A. Kraytsberg, Y. Ein-Eli, Conveying Advanced Li-ion battery materials into practice the impact of Electrode Slurry Preparation Skills. Adv. Energy Mater. 6, 1600655 (2016)

    Article  Google Scholar 

  20. M.-A. Neouze, U. Schubert, Surface modification and functionalization of metal and metal oxide nanoparticles by Organic Ligands. Monatshefte für Chemie - Chem Mon 139, 183–195 (2008)

    Article  CAS  Google Scholar 

  21. J. Cui, W. Shan, J. Xu, H. Qiu, J. Li, J. Yang, Effect of silane-bridging on the dispersion of polyetheramine-functionalized graphene oxide in waterborne epoxy composites. Compos. Sci. Technol. 200, 108438 (2020)

    Article  CAS  Google Scholar 

  22. P.C. Ma, J.-K. Kim, B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44, 3232–3238 (2006)

    Article  CAS  Google Scholar 

  23. Y. Zhang, X. Li, Y. Qiao, T. Chen, H. Shang, W. Li, M. Qu, W. Fan, Z. Xie, Modification of Li4Ti5O12Anodes using epoxy-functionalized silane to improve electrochemical performance in lithium-ion batteries. Energy Technol. 8, 1900786 (2019)

    Article  Google Scholar 

  24. J. Shi, X. Jiang, J. Sun, B. Ban, J. Li, J. Chen, A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J. Colloid Interface Sci. 588, 737–748 (2021)

    Article  CAS  Google Scholar 

  25. Y. Zhou, Z. Jia, S. Zhao, P. Chen, Y. Wang, T. Guo, L. Wei, X. Cui, X. Ouyang, X. Wang, J. Zhu, J. Sun, S. Pan, Y. Fu, Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors. Chem. Eng. J. 416, 129500 (2021)

    Article  CAS  Google Scholar 

  26. J. Yu, L. Huang, B. Kipsang, Y. Hai, Surface modification mechanism of SiC particles using KH5X0 (X = 5,6,7,8,9) silane coupling agents: first principle study. Ceram. Int 47, 25551–25557 (2021)

    Article  CAS  Google Scholar 

  27. X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem. Int. Ed. Engl. 54, 5331–5335 (2015)

    Article  CAS  Google Scholar 

  28. H. Su, X. Du, X. Zhang, NiCoP coated on NiCo2S4 nanoarrays as electrode materials for hydrogen evolution reaction. Int. J. Hydrog. Energy 44, 30910–30916 (2019)

    Article  CAS  Google Scholar 

  29. Y. Jia, L. Zhu, H. Pan, Y. Liao, Y. Zhang, X. Zhang, Z. Jiang, M. Chen, K. Wang, Excellent electrocatalytic hydrogen evolution performance of hexagonal NiCoP porous nanosheets in alkaline solution. Appl. Surf. Sci 580, 152314 (2022)

    Article  CAS  Google Scholar 

  30. H. Yang, K. Wu, G. Hu, Z. Peng, Y. Cao, K. Du, Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-Rich cathode at the upper cutoff voltage. ACS Appl. Mater. Interfaces 11, 8556–8566 (2019)

    Article  CAS  Google Scholar 

  31. H.P. Zhang, Q. Xia, B. Wang, L.C. Yang, Y.P. Wu, D.L. Sun, C.L. Gan, H.J. Luo, A.W. Bebeda, T.v. Ree, Vinyl-Tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochem. Commun 11, 526–529 (2009)

    Article  CAS  Google Scholar 

  32. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol 7, 310–315 (2012)

    Article  CAS  Google Scholar 

  33. Y.M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, C.B. Mullins, High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. (Camb) 48, 7268–7270 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Doctor’s Scientific Research Foundation of Guilin University of Technology (No. GUTQDJJ2018050) and the key R & D project of Guangxi (GUIKEAB21196006).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HL contributed to methodology, software, and writing-original draft. AZ contributed to writing-original draft. YX contributed to data curation. NP contributed to conceptualization, methodology, and data curation. YW contributed to supervision. LL contributed to supervision and resources.

Corresponding author

Correspondence to Ning Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Zhao, A., Xiao, Y. et al. Modification of NiCoP nanocages anodes using epoxy-functionalized silane to improve electrochemical performance in lithium-ion batteries. J Mater Sci: Mater Electron 34, 905 (2023). https://doi.org/10.1007/s10854-023-10304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10304-1

Navigation