Skip to main content
Log in

Hydrothermal synthesis and thermochromism effects in Eu-doped VO2 polycrystalline materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

M phase Eu-doped VO2 powders were prepared by a hydrothermal method followed by post annealing. The semiconductor–metal transition (MIT) properties of the produced samples were studied by Raman spectroscopy, infrared transmittance and resistance measurements. The results indicated that a low dose of Eu doping in VO2 induces an enhanced switching ability of its infrared transmittance as the MIT occurs, and the ∆Tr is 48% at 1000 cm−1 when the dose of Eu doping is 6%. Moreover, a low dose of Eu doping in VO2 results a better crystal quality. While a high dose of Eu doping induces enhanced tensile stress in VO2, resulting in the formation of the M2 phase of VO2 at room temperature. These results suggested that Eu is a particularly effective dopant in the synthesis of high-quality M phase VO2. Thus, Eu doping in VO2 is a distinctive strategy for realizing M phase VO2 materials that have extensive applications in the construction of smart window coatings. Possible mechanisms of Eu doping in VO2 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  CAS  Google Scholar 

  2. Y.Z. Song, W. Zhao, L. Kong, L. Zhang, X.Y. Zhu, Y.L. Shao, F. Ding, Q. Zhang, J.Y. Sun, Z.F. Liu, Energy Environ. Sci. 11, 2620 (2018)

    Article  CAS  Google Scholar 

  3. S. Lee, K. Hippalgaonkar, F. Yang, J.W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang, C. Dames, S.A. Hartnoll, O. Delaire, J.Q. Wu, Science 27, 371 (2017)

    Article  Google Scholar 

  4. M. Li, S. Magdassi, Y.F. Gao, Y. Long, Small 13, 1701147 (2017)

    Article  Google Scholar 

  5. S.H. Bae, S. Lee, H. Koo, L. Lin, B.H. Jo, C. Park, Z.L. Wang, Adv. Mater. 25, 5098 (2013)

    Article  CAS  Google Scholar 

  6. S.M. Babulanam, T.S. Eriksson, G.A. Niklasson, C.G. Granqvist, Sol. Energy Mater. 16, 347 (1987)

    Article  CAS  Google Scholar 

  7. G.P. Pan, J.H. Yin, K.L. Ji, X. Li, X.W. Cheng, H.B. Jin, J.P. Liu, Sci. Rep. 7, 6132 (2017)

    Article  Google Scholar 

  8. Y. Chen, S.Q. Ma, X. Li, X.C. Zhao, X.W. Cheng, J.P. Liu, J. Alloys Compd. 791, 307 (2019)

    Article  CAS  Google Scholar 

  9. T.D. Manning, I.P. Parkin, C. Blackman, U. Qureshi, J. Mater. Chem. 15, 4560 (2005)

    Article  CAS  Google Scholar 

  10. J.B. Goodenough, J. Solid State Chem. 3, 490 (1971)

    Article  CAS  Google Scholar 

  11. F. Béteille, J. Livage, J. Sol-Gel Sci. Technol. 13, 915 (1998)

    Article  Google Scholar 

  12. R. Chen, L. Miao, H. Cheng, E. Nishibori, C. Liu, T. Asaka, Y. Iwamoto, M. Takata, S. Tanemura, J. Mater. Chem. A 3, 3726 (2015)

    Article  CAS  Google Scholar 

  13. J. Lu, H. Liu, S. Deng, M. Zheng, Y. Wang, J.A. van Kan, S.H. Tang, X. Zhang, C.H. Sow, S.G. Mhaisalkar, Nanoscale 6, 7619 (2014)

    Article  CAS  Google Scholar 

  14. A. Rúa, R. Cabrera, H. Coy, E. Merced, N. Sepúlveda, F.E. Fernández, J. Appl. Phys. 111, 104502 (2012)

    Article  Google Scholar 

  15. Y. Wu, L. Fan, S. Chen, S. Chen, F. Chen, C. Zou, Z. Wu, Mater. Lett. 127, 44 (2014)

    Article  CAS  Google Scholar 

  16. S. Zhang, J.Y. Chou, L.J. Lauhon, Nano Lett. 9, 4527 (2009)

    Article  CAS  Google Scholar 

  17. Y.D. Ji, Y. Zhang, M. Gao, Z. Yuan, Y.D. Xia, C.Q. Jin, B.M. Tao, C.L. Chen, Q.X. Jia, Y. Lin, Sci. Rep. 4, 4854 (2014)

    Article  CAS  Google Scholar 

  18. A.C. Jones, S. Berweger, J. Wei, D. Cobden, M.B. Raschke, Nano Lett. 10, 1574 (2010)

    Article  CAS  Google Scholar 

  19. N. Wang, Q.S. Goh, P.L. Lee, S. Magdassi, Y. Long, J. Alloys Compd. 711, 222 (2017)

    Article  CAS  Google Scholar 

  20. A. Zimmers, L. Aigouy, M. Mortier, A. Sharoni, S.M. Wang, K.G. West, J.G. Ramirez, I.K. Schuller, Phys. Rev. Lett. 110, 056601 (2013)

    Article  CAS  Google Scholar 

  21. L.L. Chen, Y.C. Liu, K.B. Yang, P.P. Lan, Y.Y. Cui, H.J. Luo, B. Liu, Y.F. Gao, Comput. Mater. Sci. 161, 415 (2019)

    Article  CAS  Google Scholar 

  22. N. Wang, M. Duchamp, R.E. Dunin-Borkowski, S.Y. Liu, X.T. Zeng, X. Cao, Y. Long, Langmuir 32, 759 (2016)

    Article  Google Scholar 

  23. D. Gu, Z. Sun, X. Zhou, R. Guo, T. Wang, Y. Jiang, Appl. Surf. Sci. 359, 819 (2015)

    Article  CAS  Google Scholar 

  24. H. Lim, N. Stavrias, B.C. Johnson, R.E. Marvel, R.F. Haglund, J.C. McCallum, J. Appl. Phys. 115, 093107 (2014)

    Article  Google Scholar 

  25. X. Cao, N. Wang, S. Magdassi, D. Mandler, Y. Long, Sci. Adv. Mater. 6, 558 (2014)

    Article  CAS  Google Scholar 

  26. P. Velusamy, R.R. Babu, K. Ramamurthi, J. Viegas, E. Elangovan, J. Mater. Sci: Mater. Electron. 26, 4152 (2015)

    CAS  Google Scholar 

  27. P. Velusamy, R.R. Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, RSC Adv. 5, 102741 (2015)

    Article  CAS  Google Scholar 

  28. V.P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, J. Alloy Compd. 708, 804 (2017)

    Article  CAS  Google Scholar 

  29. Z. Chen, Y.F. Gao, L.T. Kang, C.X. Cao, S. Chen, H.J. Luo, J. Mater. Chem. A 2, 2718 (2014)

    Article  CAS  Google Scholar 

  30. R.A. Aliev, V.A. Klimov, Phys. Solid State 46, 532 (2004)

    Article  CAS  Google Scholar 

  31. R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman, R.F. Haglund, Phys. Rev. B 65, 224113 (2002)

    Article  Google Scholar 

  32. K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, R.F. Haglund Jr., Nano Lett. 12, 780 (2012)

    Article  CAS  Google Scholar 

  33. K.D. Marc, G.K. Benedikt, B. Martin, K.M. Bruno, P. Angelika, J.K. Peter, J. Appl. Phys. 177, 185301 (2015)

    Google Scholar 

  34. C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, P. Postorino, Phys. Rev. B 77, 235111 (2008)

    Article  Google Scholar 

  35. L. Whittaker, T.L. Wu, A. Stabile, G. Sambandamurthy, S. Banerjee, ACS Nano 5, 8861 (2011)

    Article  CAS  Google Scholar 

  36. K. Okimura, N.H. Azhan, T. Hajiri, S. Kimura, M. Zaghrioui, J. Sakai, J. Appl. Phys. 115, 153501 (2014)

    Article  Google Scholar 

  37. A.C. Jones, S. Berweger, J. Wei, D. Cobden, M.B. Raschke, Nano Lett. 10, 1574 (2010)

    Article  CAS  Google Scholar 

  38. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V.V. Tsukruk, Z.L. Wang, Adv. Mater. 22, 5134 (2010)

    Article  CAS  Google Scholar 

  39. Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, Y. Lin, Sci. Rep. 4, 4854 (2014)

    Article  CAS  Google Scholar 

  40. F. Guinneton, L. Sauques, J.C. Valmalette, F. Cros, J.R. Gavarri, Thin Solid Films 446, 287 (2004)

    Article  CAS  Google Scholar 

  41. C. Tang, P. Georgopoulos, M.E. Fine, J.B. Cohen, M. Nygren, G.S. Knapp, A. Aldred, Phys. Rev. B 31, 1000 (1985)

    Article  CAS  Google Scholar 

  42. R. Binions, C. Piccirillo, I.P. Parkin, Surf. Coat. Technol. 201, 9369 (2007)

    Article  CAS  Google Scholar 

  43. L. Whittaker, C.J. Patridge, S. Banerjee, J. Phys. Chem. Lett. 2, 745 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 11474019) for financial support. We also thank Prof. Haibo Jin from Beijing Institute of Technology for supporting our variable temperature transmittance measurements and Prof. Jun Lu from IOP-CAS for support of our performance of variable temperature resistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study. The idea of this work was suggested by XL. Material preparation, data collection, and analysis were performed by ZHX, GPP, KLJ, and XWC. The first draft of the manuscript was written by XL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiang Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2815.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, Z., Pan, G. et al. Hydrothermal synthesis and thermochromism effects in Eu-doped VO2 polycrystalline materials. J Mater Sci: Mater Electron 34, 894 (2023). https://doi.org/10.1007/s10854-023-10303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10303-2

Navigation