Skip to main content
Log in

Improvement of phase transition properties of magnetron sputtered W-doped VO2 films by post-annealing approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we investigate the improvement of the thermochromic properties of W-doped vanadium dioxide (VO2) films induced by annealing temperatures. Firstly, W-doped VO2 films with different W contents were successfully prepared on quartz substrates by direct current (DC) reactive magnetron sputtering. The results show that the W element not only decrease the phase transition temperature of VO2 film but also seriously decrease the infrared modulation performance of the film. Secondly, Undoped and W-doped VO2 films with different annealing temperatures were prepared and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests. The effect of annealing temperature on the chemical states, crystal structure, and surface morphology of W-doped VO2 films was analyzed. It is found that VO2 film with the 1.4 at.% ratio of W contents has excellent metal–insulator phase transition performance compared to undoped VO2 film at the annealing temperature of 400 °C, i.e., narrower hysteresis width (4.3 °C) and lower phase transition temperature (37.4 °C). More importantly, the infrared amplitude modulation of the film is closer to that of undoped VO2 films. This is attributed to the enhanced (011) diffraction peak intensity and larger particle size and obvious grain boundary in the film. This work shows proper annealing temperatures can maintain the phase-change amplitude modulation performance of W-doped VO2 films while lowering the phase transition temperature and have great potential for infrared modulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.F. Al-Hossainy, M.S. Zoromba, Doped-poly(para-nitroaniline- co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J. Alloy Compd. 789, 670–683 (2019)

    CAS  Google Scholar 

  2. M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, H. Bahaitham, A.F. Al-Hossainy, Poly(o-phenylenediamine) thin film for organic solar cell applications. J. Solid State Electrochem. 22, 3673–3687 (2018)

    CAS  Google Scholar 

  3. A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR(Cl)(H2O)] nanostructured thin films. Mater. Chem. Phys. 232, 180–192 (2019)

    CAS  Google Scholar 

  4. A.A.P. Mansur, H.S. Mansur, C. Tabare, A. Paiva, N.S.V. Capanema, Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications. J. Mater. Sci. 30, 16702–16717 (2019)

    CAS  Google Scholar 

  5. H. Schlag, W. Scherber, New sputter process for VO2 thin films and examination with MIS-elements and C-V-measurements. Thin Solid Films 366, 28–31 (2000)

    CAS  Google Scholar 

  6. Z. Gui, R. Fan, X. Chen, Y. Wu et al., A new metastable phase of needle-like nanocrystalline VO2 center dot H2O and phase transformation. J. Solid State Chem. 157, 250–254 (2001)

    CAS  Google Scholar 

  7. B. Peng, Q. Shi, W. Huang, S. Wang, J. Qi, T. Lu, Transparent AlON ceramic combined with VO2 thin film for infrared and terahertz smart window. Ceram. Int. 44, 13674–13680 (2018)

    CAS  Google Scholar 

  8. H.T. Yuan, K.C. Feng, X.J. Wang et al., Research on optical property of phase transition PcNi/VO2 films. Appl. Surf. Sci. 243, 36–39 (2005)

    CAS  Google Scholar 

  9. F. Guinneton, L. Sauques, J. Valmalette, F. Cros, J. Gavarri, Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure. Thin Solid Films 446, 287–295 (2004)

    CAS  Google Scholar 

  10. L. Zhao, L. Miao, C. Liu, C. Li, H. Cheng, Facile solution-grown Mo-doped vanadium dioxide thermochromic films with decreased phase transition temperature and narrowed hysteresis loop width. Mater. Sci. Forum 787, 23–30 (2014)

    Google Scholar 

  11. Y. Hu, Q. Shi, W. Huang, H. Zhu et al., Preparation and phase transition properties of Ti-doped VO2 films by sol-gel process. J. Sol-Gel Sci. Technol. 78, 19–25 (2016)

    CAS  Google Scholar 

  12. L. Mai, B. Hu, T. Hu, W. Chen, E. Gu, Electrical property of Mo-doped VO2 nanowire array film by melting- quenching sol-gel method. J. Phys. Chem. B 110, 19083–19086 (2006)

    CAS  Google Scholar 

  13. T.D. Manning, I.P. Parkin, Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(iv) oxide from VOCl3, water and WCl6. J. Mater. Chem. 14, 2554–2559 (2004)

    CAS  Google Scholar 

  14. D. Li, M. Li, J. Pan, Y. Luo, H. Wu, Y. Zhang, G. Li, Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. ACS Appl. Mater. Interfaces 6, 6555–6561 (2014)

    Google Scholar 

  15. L. Dai, S. Chen, J. Liu et al., F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys. Chem. Chem. Phys. 15, 11723–11729 (2013)

    CAS  Google Scholar 

  16. C. Tang, P. Georgopoulos, M. Fine, J. Cohen, M. Nygren, G. Knapp, A. Aldred, Local atomic and electronic arrangements in WxV1−xO2. Phys. Rev. B 31(2), 1000 (1985)

    CAS  Google Scholar 

  17. C. Batista, R.M. Ribeiro, J. Carneiro, V. Teixeira, DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. J. Nanosci. Nanotechnol. 9, 4220–4226 (2009)

    CAS  Google Scholar 

  18. R. Binions, C. Piccirillo, I.P. Parkin, Tungsten doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride. Surf. Coat. Technol. 201(22–23), 9369–9372 (2007)

    CAS  Google Scholar 

  19. A. Romanyuk, R. Steiner, L. Marot, P. Oelhafen, Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy. Sol. Energy Mater. Sol. Cells 91, 1831–1835 (2007)

    CAS  Google Scholar 

  20. W. Li, S. Ji, Y. Li, A. Huang, H. Luo, P. Jin, Synthesis of VO2 nanoparticles by a hydrothermal-assisted homogeneous precipitation approach for thermochromic applications. RSC Adv. 4, 13026–13033 (2014)

    CAS  Google Scholar 

  21. Z. Huang, C. Chen, C. Lv, S. Chen, Tungsten-doped vanadium dioxide thin films on borosilicate glass for smart window application. J. Alloy Compd. 564, 158 (2013)

    CAS  Google Scholar 

  22. D. Liu, H. Cheng, X. Xing, C. Zhang, W. Zheng, Thermochromic properties of W-doped VO2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Phys. Technol. 77, 339–343 (2016)

    CAS  Google Scholar 

  23. S. Liu, H. Fang, Y. Su, J. Hsieh, Metal-insulator transition characteristics of Mo- and Mn-doped VO2 films fabricated by magnetron co-sputtering technique. Jpn. J. Appl. Phys. 53, 063201 (2014)

    Google Scholar 

  24. C. Ji, Z. Wu, L. Lu et al., High thermochromic performance of Fe/Mg co-doped VO2 thin films for smart window applications. J. Mater. Chem. C. 6, 6502–6509 (2018)

    CAS  Google Scholar 

  25. D. Liu, H. Cheng, W. Zheng, C. Zhang, Effects of Mo doping on thermochromic properties of vanadium dioxide thin films. Rare Metal Mater. Eng. 40, 464 (2011)

    Google Scholar 

  26. E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul et al., Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films. J. Appl. Phys. 113(23), 233104 (2013)

    Google Scholar 

  27. T. Vu, Z. Chen, X. Zeng et al., Physical vapour deposition of vanadium dioxide for thermochromic smart window applications. J. Mater. Chem. C 7, 2121–2145 (2019)

    CAS  Google Scholar 

  28. P. Kaspar, D. Sobola, R. Dallaev et al., Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 493, 673–678 (2019)

    CAS  Google Scholar 

  29. N. Ghobadi, S. Rezaee, Synthesis of Ag–Cu–Pd alloy by DC-magnetron sputtering: micromorphology analysis. J. Mater. Sci. 27, 8464–8477 (2016)

    CAS  Google Scholar 

  30. T. Ghodselahi, A. Arman, Magnetoresistance of Cu–Ni nanoparticles in hydrogenated amorphous carbon thin films. J. Mater. Sci. 26, 4193–4197 (2015)

    CAS  Google Scholar 

  31. A.F. Al-Hossainy, A. Ibrahim, M.S. Zoromba, Synthesis and characterization of mixed metal oxide nanoparticles derived from Co–Cr layered double hydroxides and their thin films. J. Mater. Sci. 30, 11627–11642 (2019)

    CAS  Google Scholar 

  32. A.B. Slimane, A.F. Al-Hossainy, M.S. Zoromba, Synthesis and optoelectronic properties of conductive nanostructured poly(aniline-co-o-aminophenol) thin film. J. Mater. Sci. 29, 8431–8445 (2018)

    CAS  Google Scholar 

  33. A.F. Al-Hossainy, A. Ibrahim, Synthesis, structural and optical properties of novel 3-(3,5-dimethyl-1H-pyrazol-1-yl)-1-(diphenylphosphino)-2-((diphenylphosphino)methyl)-3-methylbutanone-1,2-diphenylethane-1,2-diamine tungsten dicarbonyl (PyrPMB-W) nanostructure thin film. Opt. Mater. 46, 131–140 (2015)

    CAS  Google Scholar 

  34. G. Fu, A. Polity, N. Volbers, B. Meyer, Annealing effects on VO2 thin films deposited by reactive sputtering. Thin Solid Films 515, 2519–2522 (2006)

    CAS  Google Scholar 

  35. R. Öksüzoğlu, P. Bilgiç, M. Yıldırım, O. Deniz, Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films. Opt. Laser Technol. 48, 102 (2013)

    Google Scholar 

  36. Y. Li, J. Liu, D. Wang, G. Pan, Y. Dang, Effects of the annealing process on the structure and valence state of vanadium oxide thin films. Mater. Res. Bull. 100, 220–225 (2018)

    CAS  Google Scholar 

  37. J. Zou, X. Chen, L. Xiao, Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 5(6), 065055 (2018)

    Google Scholar 

  38. R. Bowman, J. Gregg, VO2 thin films: growth and the effect of applied strain on their resistance. J. Mater. Sci. 9, 187–191 (1998)

    CAS  Google Scholar 

  39. L. Whittaker, T. Wu, C. Patridge, G. Sambandamurthy, S. Banerjee, Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium(IV) oxide. J. Mater. Chem. 21, 5580–5592 (2011)

    CAS  Google Scholar 

  40. S. Chen, H. Lu, S. Brahma, J. Huang, Effects of annealing on thermochromic properties of W-doped vanadium dioxide thin films deposited by electron beam evaporation. Thin Solid Films 644, 52–56 (2017)

    CAS  Google Scholar 

  41. Z. Luo, Z. Wu, X. Xu, M. Du, T. Wang, Y. Jiang, Microstructures and thermochromic properties of tungsten doped vanadium oxide film prepared by using VOX-W-VOX sandwich structure. Mater. Sci. Eng. B 176, 762–766 (2011)

    CAS  Google Scholar 

  42. X. Tan, T. Yao, R. Long et al., Unraveling metal–insulator transition mechanism of VO2 triggered by tungsten doping. Sci. Rep. 2, 466 (2012)

    Google Scholar 

  43. Y. Cheng, X. Zhang, C. Fang et al., Synthesis, structure and properties of printable W-doped thermochromic VO2 with a low phase transition temperature. Ceram. Int. 44, 20084–20092 (2018)

    CAS  Google Scholar 

  44. M. Molamohammadi, C. Luna, A. Arman et al., Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J. Mater. Sci. 26, 6814–6818 (2015)

    CAS  Google Scholar 

  45. J. Ye, L. Zhou, F. Liu, J. Qi, W. Gong, Y. Lin, G. Ning, Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing. J. Alloy Compd. 504, 503–507 (2010)

    CAS  Google Scholar 

  46. R. Binions, G. Hyett, C. Piccirillo, I. Parkin, Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties. J. Mater. Chem. 17, 4652–4660 (2007)

    CAS  Google Scholar 

  47. P. Jin, S. Nakao, S. Tanemura, Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing. Thin Solid Films 324, 151–158 (1998)

    CAS  Google Scholar 

  48. B. Blackburn, M. Powell, C. Knapp et al., [{VOCl2(CH2(COOEt)(2))}(4)] as a molecular precursor for thermochromic monoclinic VO2 thin films and nanoparticles. J. Mater. Chem. C 4, 10453–10463 (2016)

    CAS  Google Scholar 

  49. H. Chen, H. Hung, T. Yang, S. Wang, The preparation and characterization of transparent nano-sized thermochromic VO2–SiO2 films from the sol–gel process. J. Non-Cryst. Solids 347, 138–143 (2004)

    CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Science Funds for Creative Research Groups of China (No. 61421002) and National Natural Science Foundation of China (Grant Nos. 61235006, 61501092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wu or Xiang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wu, Z., Ji, C. et al. Improvement of phase transition properties of magnetron sputtered W-doped VO2 films by post-annealing approach. J Mater Sci: Mater Electron 31, 4150–4160 (2020). https://doi.org/10.1007/s10854-020-02964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02964-0

Navigation