Skip to main content
Log in

Oxygenated terminals of milky sap of Calotropis procera transformed 1D ZnO structure to 0D nanoparticles for enhanced photocatalytic degradation of malachite green and methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of plant extract for the synthesis of nanomaterials has been preferred over conventional growth techniques due to its safety, simple, ecofriendly, cost-effective and biocompatibility properties. The present study includes environmentally friendly approach for synthesis of ZnO–NPs using milky sap of Calotropis procera (CP) parts. The biosynthesized ZnO–NPs were investigated in terms of crystalline, morphology, and optical characterization. The CP has resulted spherical-shaped oriented nanoparticles, hexagonal phase and significantly reduced crystallite size of − 26.1 nm. The photodegradation of malachite green (MG) and methyl blue (MB) dye under the illumination of UV light was investigated using biosynthesized ZnO–NPs. The effect of different volumes of milky sap of CP was considered as a point of care to demonstrate its role towards the enhancement of photodegradation effectiveness of ZnO against two different organic dyes like malachite and methylene blue owing their issues raised for aquaculture and worsen environmental impacts. The degradation of both dyes was followed by pseudo first-order kinetics and highest volume of milky sap of CP has given out high rate constant value. The degradation efficiency of milky sap of CP-assisted ZnO nanostructures was found about 85.3% and 86.3% for MG and MB, respectively. However, we studied the effect of pH of dye solution on the photocatalytic performance of ZnO and it has revealed highly enhanced degradation efficiency. The increased functionality of ZnO was connected to the reduced particle size, optical bandgap, and tunable surface properties with the use of terminal oxygenated groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3
Scheme 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

5. References

  1. H.Y. Zhu, R. Jiang, Y.Q. Fu, Y.J. Guan, J. Yao, L. Xiao, G. Zeng, Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/ chitosan nanocomposite films under simulated solar irradiation. Desalination 286, 41–48 (2012)

    Article  CAS  Google Scholar 

  2. N. Mathur, P. Bhatnagar, P. Sharma, Review of the mutagenicity of textile dye products. Univers. J. Environ. Res. Technol. 2, 1–18 (2012)

    CAS  Google Scholar 

  3. R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Mater. Lett. 97, 100–103 (2013)

    Article  CAS  Google Scholar 

  4. M. Arab Chamjangali, G. Bagherian, B. Bahramian, B. Fahimi Rad, Synthesis and application of multiple rods gold–zinc oxide nanostructures in the photocatalytic degradation of methyl orange. Int. J. Enviro. Sci. Technol. 12, 151–160 (2015)

    Article  CAS  Google Scholar 

  5. N.Z. Razali, A.H. Abdullah, M. Haron, Degradation of methyl orange mediated by CuO-doped ZnO photocatalysts. Environ. Eng. Manage. J. (EEMJ) 10, 1523–1528 (2011)

    Article  CAS  Google Scholar 

  6. N. Tripathy, R. Ahmad, J.E. Song, H.A. Ko, Y.B. Hahn, G. Khang, Photocatalytic degradation of methyl orange dye by ZnO nanoneedle under UV irradiation. Mater. Lett. 136, 171–174 (2014)

    Article  CAS  Google Scholar 

  7. F. Tian, Z. Wu, Q. Chen, Y. Yan, G. Cravotto, Z. Wu, Microwaveinduced crystallization of AC/TiO2 for improving the performance of rhodamine B dye degradation. Appl. Surf. Sci. 351, 104–112 (2015)

    Article  CAS  Google Scholar 

  8. D. Liu, Z. Wu, F. Tian, B.C. Ye, Y. Tong, Synthesis of N and La codoped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloy. Compd. 676, 489–549 (2016)

    Article  CAS  Google Scholar 

  9. S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, ZnO/Ag heterostructures embedded in Fe3O4 nanoparticles for magnetically recoverable photocatalysis. J. Alloy. Compd. 665, 404–410 (2016)

    Article  CAS  Google Scholar 

  10. Y. Liu, L. Yu, Y. Hu, C.F. Guo, F.M. Zhang, X.W. Lou, A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183–187 (2012)

    Article  CAS  Google Scholar 

  11. A. Vázquez, D.B. Hernández-Uresti, S. Obregón, Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic. Appl. Surf. Sci. 386, 412–417 (2016)

    Article  Google Scholar 

  12. D. Pathania, D. Gupta, H. Ala’a, G. Sharma, A. Kumar, M. Naushad, T. Ahamad, S.M. Alshehri, Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation. J. Photochem. Photobiol. A 329, 61–68 (2016)

    Article  CAS  Google Scholar 

  13. K. Govindaraju, S. Khaleel Basha, V. Ganesh Kumar, G. Singaravelu, Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J. Mater. Sci. 43, 5115–5122 (2008)

    Article  CAS  Google Scholar 

  14. G. Scarano, E. Morelli, Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci. 165, 803–810 (2003)

    Article  CAS  Google Scholar 

  15. M.F. Lengke, M.E. Fleet, G. Southam, Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(5), 2694–2499 (2007)

    Article  CAS  Google Scholar 

  16. A. Muthuvel, M. Jothibas, C. Manoharan, S.J. Jayakumar, Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res. Chem. Intermed. 46, 2705–2729 (2020)

    Article  CAS  Google Scholar 

  17. K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336 (2015)

    Article  CAS  Google Scholar 

  18. B. Siripireddy, B.K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder Technol. 28, 785–797 (2017)

    Article  CAS  Google Scholar 

  19. K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, S. Ashokkumar, Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta - Part A Mol. Biomol. Spectrosc. 143, 158–164 (2015)

    Article  CAS  Google Scholar 

  20. D. Suresh, P.C. Nethravathi, H. Rajanaika, H. Nagabhushana, S.C. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 31, 446–454 (2015)

    Article  CAS  Google Scholar 

  21. H. Çolak, E. Karaköse, Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J. Alloys Compd. 690, 658–662 (2017)

    Article  Google Scholar 

  22. S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7, 501–512 (2017)

    Article  CAS  Google Scholar 

  23. S. Ambika, M. Sundrarajan, Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J. Photochem. Photobiol. B Biol. 149, 143–148 (2015)

    Article  CAS  Google Scholar 

  24. P. Mishra, P. Singh, H.P. Nagaswarupa, S.C. Sharma, Y.S. Vidya, S.C. Prashantha, H. Nagabhushana, K.S. Anantharaju, S. Sharma, L. Renuka, Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. J. Alloys Compd. 685, 656–669 (2016)

    Article  CAS  Google Scholar 

  25. M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta—Part A Mol. Biomol. Spectrosc. 136, 864–870 (2015)

    Article  CAS  Google Scholar 

  26. D. Sharma, M.I. Sabela, S. Kanchi, P.S. Mdluli, G. Singh, T.A. Stenström, K. Bisetty, Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J. Photochem. Photobiol. B Biol. 162, 199–207 (2016)

    Article  CAS  Google Scholar 

  27. R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23, 517–523 (2016)

    Article  CAS  Google Scholar 

  28. S.P. Hinge, A.B. Pandit, Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach. Adv. Nat. Sci.: Nanosci Nanotechnol. 8, 045006–045020 (2017)

    Google Scholar 

  29. D. Suresh, R.M. Shobharani, P.C. Nethravathi, M.A. Pavan Kumar, H. Nagabhushana, S.C. Sharma, Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta–Part A Mol. Biomol. Spectrosc. 141, 128–134 (2015)

    Article  CAS  Google Scholar 

  30. R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C. 41, 17–27 (2014)

    Article  CAS  Google Scholar 

  31. A.G. Millar, M. Morris, (1987) Plants of Dhofar; The Southern Region of Oman, Traditional, Economic and Medicinal Uses. The office of the Advisor for Conservation of the Environment, Diwan of Royal Court Sultanate of Oman, https://doi.org/10.1142/S0192415X91000302

  32. A.M. Greiss, Elhamy, anatomical identification of plant remains and other materials from (1) El-Omari excavation at Helwan from the first dynasty. Bull Inst. Egypt. 36, 227–235 (1955)

    Google Scholar 

  33. B.A. Ebbell, Contribution to the earliest history of leprosy. Int. J. Leprosy. 3, 257–263 (1935)

    Google Scholar 

  34. A.O. Prakash, R.B. Gupta, R. Mathur, Effect of oral administration of forty two indigenous lants extracts on early and late pregnancy in albino rats. Probe 27, 315–323 (1978)

    Google Scholar 

  35. S.M.H. Ayoub, D.G.I. Kingston, Screening of plants used in Sudan folk medicine for anticancer activity. Fitoterapia 52, 281–284 (1981)

    Google Scholar 

  36. S.N. Nandal, D.S. Bhatti, Preliminary screening of some weeds and shrubs for their neomatocidal activity against Meloidogyne javanica. Indian J. Nematol. 13, 123–127 (1983)

    Google Scholar 

  37. N. Mascolo, R. Sharma, S.C. Jain, F. Capasso, Ethnopharmacology of calotropis procera flowers. J. Ethnopharmacol. 22, 211–221 (1988)

    Article  CAS  Google Scholar 

  38. A. Muthuvel, M. Jothibas, V. Mohana, C. Manoharan, Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 119, 108086 (2020)

    Article  CAS  Google Scholar 

  39. R.P. Mali, P.S. Rao, R. Jadhav, A review on pharmacological activities of Calotropis procera. J. Drug. Deliv. Ther. 9, 947–951 (2019)

    CAS  Google Scholar 

  40. M. Khatami, M.S. Nejad, S. Salari, P.G.N. Almani, Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol. 10, 237–243 (2016)

    Article  Google Scholar 

  41. L. Shiri, S. Rahmati, Z. Ramezani Nejadv, M. Kazemi, Synthesis and characterization of bromine source immobilized on diethylenetriamine-functionalized magnetic nanoparticles: a novel, versatile and highly efficient reusable catalyst for organic synthesis. Appl. Organo. Chem. 31, 3687 (2017)

    Article  Google Scholar 

  42. F. Ullah, S. Nasar Shah, W. Zaman, M. Zafar, M. Ahmad, A. Ayaz, A. Sohail, S. Saqib, Using palynomorphological characteristics for the identification of species of Alsinoideae (Caryophyllaceae): a systematic approach. Grana 58, 174–184 (2019)

    Article  Google Scholar 

  43. S. Hemmati, M. Baghayeri, S. Kazemi, H. Veisi, Biosynthesis of silver nanoparticles using oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Appl. Organo. Chem. 32, e4537 (2018)

    Article  Google Scholar 

  44. B.C. Gibb, R.G. Chapman, J.C. Sherman, Synthesis of hydroxyl-footed cavitands. J. Org. Chem. 61, 1505 (1996)

    Article  CAS  Google Scholar 

  45. M.G. Demissie, F.K. Sabir, G.D. Edossa, B.A. Gonfa, Synthesis of zinc oxide nanoparticles using leaf extract of Lippia adoensis (koseret) and evaluation of its antibacterial activity. J Chem (2020). https://doi.org/10.1155/2020/7459042

    Article  Google Scholar 

  46. S.W. Yun, Y. Shim, S.G. Cho, Sintering behaviour and electrical characteristics of ZnO varistors prepared by pechini process. J. Korean Ceram. Soc. 35, 498–504 (1998)

    CAS  Google Scholar 

  47. J.H. Ryu, C.S. Lim, K.H. Auh, Synthesis of ZnWO 4 nanopowders by polymerized complex method. J. Korean Ceram. Soc. 39, 321–326 (2002)

    Article  CAS  Google Scholar 

  48. R. Radhakrishnan, F.L.A. Khan, A. Muthu, A. Manokaran, J.S. Savarenathan, K. Kasinathan, Green synthesis of copper oxide nanoparticles mediated by aqueous leaf extracts of Leucas aspera and Morinda tinctoria. Lett. Appl. Nanobiosci. 10, 2706–2714 (2021)

    Article  Google Scholar 

  49. A. Pugazhendhi, S.S. Kumar, M. Manikandan, M. Saravanani, Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi. Microb. Pathog. 122, 84–89 (2018)

    Article  CAS  Google Scholar 

  50. P.A. Luque-Morales, A. Lopez-Peraza, O.J. Nava-Olivas, G. Amaya-Parra, Y.A. Baez-Lopez, V.M. Orozco-Carmona, H.E. Garrafa-Galvez, M.D.J. Chinchillas-Chinchillas, ZnO semiconductor nanoparticles and their application in photocatalytic degradation of various organic dyes. Materials 14, 7537 (2021)

    Article  CAS  Google Scholar 

  51. M.A. Debeila, M.C. Raphulu, E. Mokoena, M. Avalos, V. Petranovskii, N.J. Coville, M.S. Scurrell, The influence of gold on the optical properties of sol–gel derived titania. Mater. Sci. Eng., A 396, 70–76 (2005)

    Article  Google Scholar 

  52. T. Saad Algarni, N.A. Abduh, A. Al Kahtani, A. Aouissi, Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from Rosmarinus officinalis extract. Green Chem. Lett. Rev. 15, 460–473 (2022)

    Article  CAS  Google Scholar 

  53. S. Chen, W. Zhao, W. Liu, S.J. Zhang, Prepartion, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO. J. Sol-Gel Sci. Technol. 50, 387–396 (2009)

    Article  Google Scholar 

  54. M.A. Bhatti, A.A. Shah, K.F. Almani, A. Tahira, S.E. Chalangar, A. dad Chandio, O. Nur, M. Willander, Z.H. Ibupoto, Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceramics Int. 45, 23289–23297 (2019)

    Article  CAS  Google Scholar 

  55. M.A. Bhatti, A. Tahira, K.F. Almani, A.L. Bhatti, B. Waryani, A. Nafady, Z.H. Ibupoto, Enzymes and phytochemicals from neem extract robustly tuned the photocatalytic activity of ZnO for the degradation of malachite green (MG) in aqueous media. Res. Chem. Intermed. 47, 1581–1599 (2021)

    Article  CAS  Google Scholar 

  56. Z. Zhao, Y. Zheng, Sci. China, Ser. D Earth Sci. 52, 1295–1318 (2009)

    Article  CAS  Google Scholar 

  57. K. Sharma, R.K. Vyas, A.K. Dalai, Thermodynamic and kinetic studies of methylene blue degradation using reactive adsorption and its comparison with adsorption. J. Chem. Eng. Data. 62, 3651–3662 (2017)

    Article  CAS  Google Scholar 

  58. T.H. Han, M.M. Khan, S. Kalathil, J. Lee, M.H. Cho, imultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind. Eng. Chem. Res. 52, 8174–8181 (2013)

    Article  CAS  Google Scholar 

  59. A.N. Rao, B. Sivasankar, V. Sadasiva, Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. J. Hazard. Mater. 166, 1357–1361 (2009)

    Article  Google Scholar 

  60. N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56, 101–107 (2007)

    Article  CAS  Google Scholar 

  61. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  62. M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 133, 226–232 (2006)

    Article  CAS  Google Scholar 

  63. R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, A. Agostiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl. Catal. B 60, 1–11 (2005)

    Article  CAS  Google Scholar 

  64. H. Li, S. Yin, Y. Wang, T. Sato, Efficient persistent photocatalytic decomposition of nitrogen monoxide over a fluorescence-assisted CaAl2O4: (Eu, Nd)/(Ta, N)-codoped TiO2/Fe2O3. Appl. Catal. B 132, 487–492 (2013)

    Article  Google Scholar 

  65. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Sol– gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252, 233–242 (2013)

    Article  Google Scholar 

  66. J.C. Sin, J. Quek, S.M. Lam, H. Zeng, H. Lin, H. Li, K.O. Tham, A.R. Mohamed, J.W. Lim, Punica granatum mediated green synthesis of cauliflower-like ZnO and decorated with bovine bone-derived hydroxyapatite for expeditious visible light photocatalytic antibacterial, antibiofilm and antioxidant activities. J. Environ. Chem. Eng. 9, 105736 (2021)

    Article  CAS  Google Scholar 

  67. S.M. Lam, J.C. Sin, H. Zeng, H. Lin, H. Li, Y.Y. Chai, M.K. Choong, A.R. Mohamed, Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mater. Sci. Semicond. Process. 123, 105574 (2021)

    Article  CAS  Google Scholar 

  68. Y.H. Chin, J.C. Sin, S.M. Lam, H. Zeng, H. Lin, H. Li, L. Huang, A.R. Mohamed, 3-D/3-D Z-Scheme heterojunction composite formed by marimo-like Bi2WO6 and mammillaria-like ZnO for expeditious sunlight photodegradation of dimethyl phthalate. Catalysts 12, 1427 (2022)

    Article  CAS  Google Scholar 

  69. Y.H. Chin, J.C. Sin, S.M. Lam, H. Zeng, H. Lin, H. Li, A.R. Mohamed, 0-D/3-D heterojunction composite constructed by decorating transition metal oxide nanoparticle on peony-like ZnO hierarchical microstructure for improved photodegradation of palm oil mill effluent. Optik 260, 169098 (2022)

    Article  CAS  Google Scholar 

  70. S.M. Lam, K.C. Chew, J.C. Sin, H. Zeng, H. Lin, H. Li, J.W. Lim, A.R. Mohamed, Ameliorated photodegradation performance of polyethylene and polystyrene films incorporated with ZnO-PVP catalyst. J. Environ. Chem. Eng. 10, 107594 (2022)

    Article  CAS  Google Scholar 

  71. K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.) Appl. Surf. Sci. 345, 329–336 (2015)

    Article  CAS  Google Scholar 

  72. J. Osuntokun, D.C. Onwudiwe, E.E. Ebenso, Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chem. Lett. Rev. 12, 444–457 (2019)

    Article  CAS  Google Scholar 

  73. M.H. Kahsay, Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl Water Sci 11, 45 (2021)

    Article  CAS  Google Scholar 

  74. M.J. Haque, M.M. Bellah, M.R. Hassan, S. Rahman, Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 1, 0007 (2020)

    Article  Google Scholar 

  75. Y.C. Liu, J. Li, J. Ahn, J. Pu, E.J. Rupa, Y. Huo, D.C. Yang, Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik 218, 165245 (2020)

    Article  CAS  Google Scholar 

  76. M.P. Kumar, D. Suresh, H. Nagabhushana, S.C. Sharma, Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur. Phys. J. Plus 130, 109 (2015)

    Article  Google Scholar 

  77. J.K. Park, E.J. Rupa, M.H. Arif, J.F. Li, G. Anandapadmanaban, J.P. Kang, M. Kim, J.C. Ahn, R. Akter, D.C. Yang, S.C. Kang, Synthesis of zinc oxide nanoparticles from Gynostemma pentaphyllum extracts and assessment of photocatalytic properties through malachite green dye decolorization under UV illumination-A Green Approach. Optik 239, 166249 (2021)

    Article  CAS  Google Scholar 

  78. F.M. Albarakaty, M.I. Alzaban, N.K. Alharbi, F.S. Bagrwan, A.R. Abd El-Aziz, M.A. Mahmoud, Zinc oxide nanoparticles, biosynthesis, characterization and their potent photocatalytic degradation, and antioxidant activities. J. King Saud University-Science 35, 102434 (2023)

    Article  Google Scholar 

  79. A. El Golli, M. Fendrich, N. Bazzanella, C. Dridi, A. Miotello, M. Orlandi, Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J. Environ. Manage. 286, 112226 (2021)

    Article  Google Scholar 

  80. S.M. Rao, S. Kotteeswaran, A.M. Visagamani, Green synthesis of zinc oxide nanoparticles from camellia sinensis: organic dye degradation and antibacterial activity. Inorg. Chem. Commun. 134, 108956 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciations to Researchers Supporting Project number (RSP2023R79), King Saud University, Riyadh, Saudi Arabia, for partial funding of this work.

Funding

King Saud University, RSP2023R79, Ayman Nafady

Author information

Authors and Affiliations

Authors

Contributions

MAB, did synthesis of ZnO nanostructures and evaluate the partial photocatalytic properties. AT, did XRD analysis. AAH, did analysis of obtained photodegradation results. UA, did optical bandgap analysis. AN, partially supervised the work and edit the draft of manuscript. BV, did the SEM analysis and edit the draft of paper. ZHI, supervised the work and wrote the first draft of manuscript.

Corresponding author

Correspondence to Zafar Hussain Ibupoto.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest in the presented research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.A., Tahira, A., Hullio, A.A. et al. Oxygenated terminals of milky sap of Calotropis procera transformed 1D ZnO structure to 0D nanoparticles for enhanced photocatalytic degradation of malachite green and methylene blue. J Mater Sci: Mater Electron 34, 929 (2023). https://doi.org/10.1007/s10854-023-10290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10290-4

Navigation