Skip to main content
Log in

Investigation of structural, electrical and magnetic properties of nickel substituted Co–Zn nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of nickel-substituted cobalt–zinc ferrite nanoparticles were synthesized via a citrate precursor technique. The Ni ion substitution effect was investigated on the various morphological, structural, electrical, magnetic and dielectric properties. The structural behavior examined using X-ray diffraction revealed the formation of single-phase cubic structure with no impurity phase, where, crystallite size varied between 36.79 and 40.57 nm. The lattice parameter values increased from 8.417 to 8.449 Å. The material is found to have tensile strain as depicted by W–H graphs where its value varied between 0.0027 and 0.0032. The average grain size of ~ 100 nm was observed by SEM micrographs. The synthesized nanoferrite particles were found to have efficient dielectric parameter values at 1 MHz frequency. The real and imaginary parts of the dielectric constant were found to be in the range from 3.06 to 13.77 and 0.23 to 3.6, respectively. The loss tangent was recorded as very low with values ranging from 0.075 to 0.26 at 1 MHz frequency for the nickel-substituted ferrite nanoparticles. The dc resistivity was calculated in the range 7.68 × 106–2.28 × 108 Ω-cm for the prepared samples. The Vibrating Sample Magnetometer analysis showed that the saturation magnetization decreased from 54.95 to 41.18 emu/g, whereas the coercivity value varied between 155.084 and 285.490 Oe. From all these observations, these materials are found to be suitable for use in high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  1. M. Almessiere, Y. Slimani, S. Rehman, F.A. Khan, M. Sertkol, A. Baykal, Green synthesis of Nd substituted Co-Ni nanospinel ferrites: structural, magnetic and antibacterial/anticancer investigation. J. Phys. D: Appl. Phys. 55(5), 055002 (2021)

    Article  Google Scholar 

  2. K.R. Sanadi, K.C. Rathod, M.L. Gaur, R.R. Powar, V.G. Parale, R.S. Patil, S.H. Burungale, A.V. Mali, UV light-activated photocatalytic degradation of rhodamine B dye and Suzuki cross-coupling reaction by Ni ferrite catalyst synthesized by sol-gel auto-combustion method. Bull. Mater. Sci. 44, 1–8 (2021)

    Article  Google Scholar 

  3. P. Thakur, A. Thakur, M. Singh, Low temperature synthesis of Mn0.4Zn0.6ln0.5Fe1.5O4 nanoferrite for high-frequency applications. J.Phys. Chem. Solids 69, 187–192 (2008)

    Article  Google Scholar 

  4. L.G. Petrescu, M.C. Petrescu, V. Ionita, E. Cazacu, C.D. Constantinescu, Magnetic properties of manganese—zinc soft ferrite ceramic for high frequency applications. Materials (Basel) 12, 3173 (2019)

    Article  CAS  Google Scholar 

  5. P. Mathur, A. Thakur, M. Singh, G. Harris, Preparation and characterization of Mn0.4NixZn0.6-xFe2O4 soft spinel ferrites for low and high frequency applications by citrate precursor method. Zeitchrift fur Physikalische Chemie 222, 621–633 (2008)

    Article  CAS  Google Scholar 

  6. L.E. Caldeira, Synthesis, properties and applications of spinel cobalt ferrites. Environ. Appl. Nanomater. (2021). https://doi.org/10.1007/978-3-030-86822-2_1

    Article  Google Scholar 

  7. X. Junming, H. Xiaoping, S. Kaixin, Z. Liang, Z. Ying, Q. Huibin (2010) Ferrite film on silics particles for high frequency application. The international conference on electrical and control engineering (ICECE), pp. 3750–3752

  8. D. Chahar, S. Taneja, P. Thakur, A. Thakur, Remarkable resistivity and improved dielectric properties of Co–Zn nanoferrites for high frequency applications. J. Alloys Compd. 843, 15568 (2020)

    Article  Google Scholar 

  9. P. Mathur, A. Thakur, J.H. Lee, M. Singh, Sustained electromagnetic properties of Ni-Zn-Co nanoferrites for the high-frequency applications. Mater. Lett. 64, 2738–2741 (2010)

    Article  CAS  Google Scholar 

  10. P. Thakur, P. Sharma, J. Luc, M. Patrick, Q. Alex, V.T. Sergei, L.V. Panina, A. Thakur, Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite. J. Mater. Sci.: Mater. Electron. 29, 16507–16515 (2018)

    CAS  Google Scholar 

  11. S. Taneja, D. Chahar, P. Thakur, A. Thakur, Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites. J. Alloys Compd. 859, 157760 (2021)

    Article  CAS  Google Scholar 

  12. D. Chahar, S. Taneja, S. Bisht, S. Kesarwani, P. Thakur, A. Thakur, P.B. Sharma, Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloys Compd. 851, 156878 (2021)

    Article  CAS  Google Scholar 

  13. P. Sharma, A. Sharma, M. Sharma, N. Bhalla, P. Estrela, A. Jain, P. Thakur, A. Thakur, Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Chall. 1(9), 1700041(2–8) (2017)

    Google Scholar 

  14. K. Malaie, M. RezaGanjali, Spinel nano-ferrites for aqueous supercapacitors; linking abundant resources and low-cost processes for sustainable energy storage. J. Energy Storage 33, 102097 (2021)

    Article  Google Scholar 

  15. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020)

    Article  CAS  Google Scholar 

  16. D.P. Sherstyuk, A.Y. Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov et al., Effect of co ceontent on magnetic features and SPIN states in Ni-Zn spinel ferrites. Ceram. Int. 47, 12163–12169 (2021)

    Article  CAS  Google Scholar 

  17. O.M. Hemeda, O. Saleh, A.M. Henaish, S.A.A. El-Kaream, R. Ghazy, O.M. Hemeda et al., Structure, morphology and electrical/magnetic properties of Ni-Mg nanoferrites from a new perspective. Nanomaterials 12, 1045 (2022)

    Article  Google Scholar 

  18. M.A. Almessiere, Y. Slimani, S. Ali, A. Baykal, R.J. Balesamy, S. Guner et al., Impact of Ga3+ ions on the structure, magnetic and optical features of Co-Ni nanostructured spinel ferrite microspheres. Nanomaterials 12, 2872 (2022)

    Article  CAS  Google Scholar 

  19. P. Thakur, S. Taneja, D. Sindhu, U. Lüders, A. Sharma, B. Ravelo, A. Thakur, Manganese zinc ferrites: a short review on synthesis and characterization. J. Supercond. Novel Magn. 33, 1–16 (2020)

    Article  Google Scholar 

  20. B. Thangjam, I. Soibam, Comaparative study of structural, electrical and magnetic behaviour of Ni-Cu-Zn nanoferrites sintered by Microwave and conventional techniques. J. Nanomater. 2017, 5756197 (2017)

    Article  Google Scholar 

  21. S. Hazra, N.N. Ghosh, Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14(2), 1983–2000 (2014)

    Article  CAS  Google Scholar 

  22. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, A. Kasuya, Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. Mater. Sci. 38, 2640–2642 (2002)

    CAS  Google Scholar 

  23. B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 powders with high surface area by solution combustion method: effect of fuel content and cobalt precursor. Ceram. Int. 43, 1–7 (2016)

    Google Scholar 

  24. S.N. Okuno, S. Hashimoto, K. Inomata, S.N. Okuno, S. Hashimoto, Preferred crystal orientation of cobalt ferrite thin films induced by ion bombardment during deposition. J. Appl. Phys. 71, 5926 (1992)

    Article  CAS  Google Scholar 

  25. K. Rana, P. Thakur, P. Sharma, M. Tomar, V. Gupta, A. Thakur, Improved structural and magnetic properties of cobalt nanoferrites: influence of sintering temperature. Ceram. Int. 41, 4492–4497 (2014)

    Article  Google Scholar 

  26. T. Dippong, E.A. Levei, L. Diamandescu, I. Bibicu, C. Lepsteam, G. Borodi, L.B. Tudoran, Structural and magnetic properties of CoxFe3-xO4 versus Co/Fe molar ration. J. Magn. Magn. Mater. 394, 111–116 (2015)

    Article  CAS  Google Scholar 

  27. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358–359, 87–92 (2014)

    Article  Google Scholar 

  28. N.M. Deraz, A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrol. 94, 41–47 (2012)

    Article  CAS  Google Scholar 

  29. S. Dey, J. Ghose, Synthesis, characterisation and magnetic studies on nanocrystalline Co0.2Zn0.8Fe2O4. Mater. Res. Bull. 38, 1653–1660 (2003)

    Article  CAS  Google Scholar 

  30. M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles. J. Magn. Magn. Mater. 322, 383–388 (2010)

    Article  CAS  Google Scholar 

  31. L.R. Gonsalves, V.M.S. Verenkar, Synthesis and thermal studies of the cobalt zinc ferrous fumarato-hydrazinate. J. Therm. Anal. Calorim. 108, 871–875 (2012)

    Article  CAS  Google Scholar 

  32. R. Topkaya, A. Baykal, A. Demir, Yafet—Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15(1), 1359 (2013)

    Article  Google Scholar 

  33. K.A. Hossain, S. Akther, D.K. Saha, Dielectric and transport properties of Zn-substituted cobalt ferrites. J. Bangladesh Acad. Sci. 37, 73–82 (2013)

    Article  Google Scholar 

  34. S. Gregory, C. Fonseca, U.C. Silva, U. Federal, D.C. Grande, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-xZnxFe2O4 synthesized by combustion route 2. Mater. Methods 21, 1–9 (2018)

    Google Scholar 

  35. M.S. Hossain, M. Shahjahan, S. Islam, N. Khatun, M. Hossain, M.S. Alam, Synthesis, structural investigation, dielectric and magnetic properties of Zn2+ -doped cobalt ferrite by the sol–gel technique. J. Adv. Dielectr. 8, 2–7 (2018)

    Article  Google Scholar 

  36. S. Gangatharan, V. Chidambaram, K. Sivakumar, Synthesis, structural and dielectric studied of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. (2010). https://doi.org/10.4236/msa.2010.11004

    Article  Google Scholar 

  37. R.K. Sharma, O. Suwalka, N. Lakshmi, K. Venugopalan, A. Banerjee, P.A. Joy, Synthesis of chromium substituted nanoparticles of cobalt zinc ferrites by co–precipitation. Mater. Lett. 59, 3402–3405 (2005)

    Article  CAS  Google Scholar 

  38. B. Prasad, R. Kocharlakota, A. Srinivas, Structural and soft magnetic properties of nickel-substituted Co-Zn nanoferrites. J. Supercond. Nov. Magn. 31, 3223 (2018)

    Article  Google Scholar 

  39. D.A. Vinnik, D.P. Sherstyuk, V.E. Zhivulin, D.E. Zhivulin, A.Y. Starikov, S.A. Gudkova et al., Impact of Zn-Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int. 48, 18124–18122 (2022)

    Article  CAS  Google Scholar 

  40. M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Guner, M.A. Almessiere et al., Structural parameters, energy states and magnetic properties of novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for FER. Ceram. Int. 48, 24866–24876 (2022)

    Article  CAS  Google Scholar 

  41. T. Dippong, E.A. Levei, I.G. Deac, F. Goga, O. Cadar, Investigation of structural and magnetic properties of NixZn1-xFe2O4/SiO2 (0≤x≤1) spinel-based nanocomposites. J. Anal. Appl. Pyrol. 144, 104713 (2019)

    Article  CAS  Google Scholar 

  42. K. Rana, P. Thakur, A. Thakur, M. Tomar, V. Gupta, J.L. Mattei, P. Queffelec, Influence of samarium doping on magnetic and structural properties of M type Ba–Co hexaferrite. Ceram. Int. 42, 8413–8418 (2016)

    Article  CAS  Google Scholar 

  43. S. Chandel, P. Thakur, M. Tomar, V. Gupta, A. Thakur, Investigation of structural, optical, dielectric and magnetic studies of Mn substituted BiFeO3 multiferroics. Ceram. Int. 43, 13750–13758 (2017)

    Article  CAS  Google Scholar 

  44. P.M. Botta, P.G. Bercoff, E.F. Aglietti, H.R. Bertorello, J.M. Porto Lopez, Two alternative synthesis routes for MnZn ferrites using mechanochemical treatments. Ceram. Int. 32, 857–863 (2006)

    Article  CAS  Google Scholar 

  45. D.N. Bhosale, V.M.S. Verenkar, K.S. Rane, P.P. Bakare, S.R. Sawant, Initial susceptibility studies on Cu-Mg-Zn ferrites. J. Mater. Chem. Phys. 59, 57–62 (1999)

    Article  CAS  Google Scholar 

  46. H. Mohseni, H. Shokrollahi, I. Sharifi, Kh. Gheisari, Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process. J. Magn. Magn. Mater. 324, 3741–3747 (2012)

    Article  CAS  Google Scholar 

  47. P. Sharma, P. Thakur, J.L. Mattei, P. Queffelec, A. Thakur, Synthesis, structural, optical, electrical and Mössbauer spectroscopic studies of Co substituted Li0.5Fe2.5O4. J. Magn. Magn. Mater. 407, 17–23 (2016)

    Article  CAS  Google Scholar 

  48. S. Bhukal, S. Bansal, S. Singhal, Structural, electrical and magnetic properties of Ni-doped Co-Zn nano ferrites and their applications in photocatalytic degradation of methyl orange dye. Solid State Phenom. 232, 197–211 (2015)

    Article  Google Scholar 

  49. D. Nikam, S. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1-xZnxFe2O4 (x=0–1) nanoparticles. RSC Adv. 5(3), 2338 (2014)

    Article  Google Scholar 

  50. M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Allos Compd. 233, 129–135 (1996)

    Article  CAS  Google Scholar 

  51. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  52. J.C. Maxwell, A Treatise on Electricity and Magnetism. Oxford University Press, New York, Vol. 1 (1873) p. 828

  53. K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817–855 (1913)

    Article  Google Scholar 

  54. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J. Phys. D: Appl. Phys. 39, 900–910 (2006)

    Article  CAS  Google Scholar 

  55. L. John Berchmans, R. Kalai Selvan, C.O. Augustin, Evaluation of Mg2+-substituted NiFe2O4 as a green anode material. Mater. Lett. 58, 1928–1933 (2004)

    Article  Google Scholar 

  56. P. Venugopal Reddy, T. Seshagiri Rao, Dielectric behaviour of mixed Li-Ni ferrites at low frequencies. J. Less Common Metals 86, 255–261 (1982)

    Article  Google Scholar 

  57. C.S. Narasimhan, C.S. Swamy, Studies on the solid state properties of the solid solution system MgAl2−xFexO4. Phys. Status Solidi 59, 817–826 (1980)

    Article  CAS  Google Scholar 

  58. D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112 (1970)

    Article  Google Scholar 

  59. G.N. Chavan, P.B. Belavi, L.R. Naik, B.K. Bammannavar, K.P. Ramesh, S. Kumar, Electrical and magnetic properties of nickel substituted cadmium ferrites. Int. J. Sci. Technol. 2, 2277–8616 (2013)

    Google Scholar 

  60. T.A. Dippong, E.A. Levei, O. Cadar, Formation, structure and magnetic properties of MFe2O4@SiO2 (M = Co, Mn, Zn, Ni, Cu) nanocomposites. Materials 14, 1139 (2021)

    Article  CAS  Google Scholar 

  61. T.A. Dippong, E.A. Levei, O. Cadar, F. Goga, L.B. Tudoran, G. Boradi, Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J. Anal. Appl. Pyrol. 128, 121–130 (2017)

    Article  CAS  Google Scholar 

  62. M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, New Mg0.5CoxZn0.5-xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation. Curr. Appl. Phys. 14, 716–720 (2014)

    Article  Google Scholar 

  63. C.S. Stergiou, Structural and magnetic properties of Yttrium and lanthanum doped Ni-Co and Ni-Co-Zn spinel ferrites. AIP Conf. Proc. 117, 1627 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DC, PT. The first draft of the manuscript was written by PT, A-CAS and AT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Atul Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahar, D., Thakur, P., Sun, AC.A. et al. Investigation of structural, electrical and magnetic properties of nickel substituted Co–Zn nanoferrites. J Mater Sci: Mater Electron 34, 901 (2023). https://doi.org/10.1007/s10854-023-10273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10273-5

Navigation