Skip to main content
Log in

Structural and electrical properties of monovalent K doping in Pr0.6(Sr1-xKx)0.4MnO3 polycrystalline ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pr0.6(Sr1-xKx)0.4MnO3 polycrystalline ceramics (PSKMO, 0 ≤ x ≤ 0.25) were fabricated via using sol–gel method. The structure of PSKMO ceramics was identified to be the orthorhombic structure with Pnma space group. As K-concentration (x) rose, grain sizes increased significantly. The constituent elements of PSKMO ceramics were uniformly distributed on the surface. From the resistivity dependence of temperature (ρ-T) curves, it was clear that resistivity rose with the increase of K-concentration. Notably, the peak temperature coefficient of resistivity (TCR) and temperature (Tk) decreased as x rose in this study. This result was attributed to the disorder of cation size on A-site (\({\sigma }^{2}\)), which induced lattice strain leading to the random displacement of O2− ions. Further, it led to the distortion of MnO6 octahedron that promoted the localization of electrons, thereby reducing Tk. Moreover, the maximum value of TCR reached 7.60% K−1 at 299.31 K (for x = 0.15). This result suggested that the Pr0.6(Sr0.85K0.15)0.4MnO3 ceramic was befitting for application in advanced uncooled infrared bolometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. S.O. Manjunatha, A. Rao, L. Subhashini, G.S. Okram, Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2-xBaxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloy. Compd. 640, 154 (2015)

    Article  CAS  Google Scholar 

  2. N. Assoudi, M. Smari, I. Walha, E. Dhahri, S. Shevyrtalov, O. Dikaya, V. Rodionova, Unconventional critical behavior near the phase transition temperature and magnetocaloric effect in La0.5Ca0.4Ag0.1MnO3 compound. Chem. Phys. Lett. 706, 182 (2018)

    Article  CAS  Google Scholar 

  3. P.K. de Boer, R.A. de Groot, The electronic structure of colossal magnetoresistive manganites. Comput. Mater. Sci. 10, 240 (1998)

    Article  Google Scholar 

  4. M. Nasri, M. Triki, E. Dhahri, E.K. Hlil, P. Lachkar, Electrical transport and magnetoresistance properties of (1–x)La0.6Sr0.4MnO3/x(Sb2O3) composites. J. Alloy. Compd. 576, 404 (2013)

    Article  CAS  Google Scholar 

  5. J.F. Hua, H.W. Qin, Y.F. Wang, B. Li, Giant magnetoimpedance and permeability change in La2/3Sr1/3MnO3 manganite under low fields. J. Magn. Magn. Mater. 322, 3245 (2010)

    Article  Google Scholar 

  6. R.D. Mcmichael, R.D. Shull, L.J. Swartzendruber, L.H. Bennett, R.E. Watson, Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111, 29 (1992)

    Article  CAS  Google Scholar 

  7. J.Y. Fan, Y.F. Xie, Y. Zhu, F.J. Qian, Y.D. Ji, D.Z. Hu, W. Tong, L. Zhang, L.S. Ling, C.X. Wang, C.L. Ma, H. Yang, Emergent phenomena of magnetic skyrmion and large DM interaction in perovskite manganite La0.8Sr0.2MnO3. J. Magn. Magn. Mater. 483, 42 (2019)

    Article  CAS  Google Scholar 

  8. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep.-Rev. Sec. Phys. Lett. 344, 1 (2001)

    CAS  Google Scholar 

  9. A.J. Millis, Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998)

    Article  CAS  Google Scholar 

  10. P. Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  11. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995)

    Article  CAS  Google Scholar 

  12. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B: Condens. Matter 54, R15622 (1996)

    Article  CAS  Google Scholar 

  13. P.D.H. Yen, N.T. Dung, T.D. Thanh, S.C. Yu, Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds. Curr. Appl. Phys. 18, 1280 (2018)

    Article  Google Scholar 

  14. X.Q. Lang, X.C. Sun, Z.T. Liu, H.S. Nan, C.L. Li, X.Y. Hu, H.W. Tian, Ag- nanoparticles decorated perovskite La0.85Sr0.15MnO3 as electrode materials for supercapacitors. Mater. Lett. 243, 34 (2019)

    Article  CAS  Google Scholar 

  15. R.C. Bhatt, P.C. Srivastava, S.K. Agarwal, V.P.S. Awana, Observance of improved magneto-resistance and magnetic entropy change in La0.7(Ca0.2Sr0.1)MnO3: Pd composite. J. Supercond. Nov. Magn 27, 1491 (2014)

    Article  CAS  Google Scholar 

  16. T. Sun, F.Q. Ji, Y. Liu, G. Dong, S. Zhang, Q.M. Chen, X. Liu, La1-xSrxMnO3:Ag0.2 (0.1 ≤ x ≤ 0.2) ceramics with large room-temperature TCR for uncooled infrared bolometers. J. Eur. Ceram. Soc. 39, 352 (2019)

    Article  CAS  Google Scholar 

  17. R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhalla, Search for room temperature high-TCR manganite/silver composites. J. Magn. Magn. Mater. 320, L89 (2008)

    Article  CAS  Google Scholar 

  18. X.L. Guan, H.J. Li, S.Z. Jin, X.H. Yu, K.L. Chu, X.R. Pu, X. Gu, J.B. Peng, X. Liu, TCR and MR room-temperature enhancing mechanism of La0.7K0.3-xSrxMnO3 ceramics for uncooling infrared bolometers and magnetic sensor devices. Ceram. Int. 47, 18931 (2021)

    Article  CAS  Google Scholar 

  19. X.H. Yu, H.J. Li, K.L. Chu, X.R. Pu, X. Gu, S.Z. Jin, X.L. Guan, X. Liu, A comparative study on high TCR and MR of La0.67Ca0.33MnO3 polycrystalline ceramics prepared by solid-state and sol-gel methods. Ceram. Int. 47, 13469 (2021)

    Article  CAS  Google Scholar 

  20. Y.K. Lakshmi, G. Venkataiah, M. Vithal, P.V. Reddy, Magnetic and electrical behavior of La1-xAxMnO3 (A = Li, Na, K and Rb) manganites. Physica B 403, 3059 (2008)

    Article  CAS  Google Scholar 

  21. W. Zhong, W. Chen, W.P. Ding, N. Zhang, A. Hu, Y.W. Du, Q.J. Yan, Structure, composition and magnetocaloric properties in polycrystalline La1-xAxMnO3+δ (A = Na, K). Eur. Phys. J. B 3, 169 (1998)

    Article  CAS  Google Scholar 

  22. P. Mandal, Temperature and doping dependence of the thermopower in LaMnO3. Phys. Rev. B 61, 14675 (2000)

    Article  CAS  Google Scholar 

  23. R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, C.N.R. Rao, Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys Rev. B Condensed Matter 53, 3348 (1996)

    Article  CAS  Google Scholar 

  24. R.C. Bhatt, V.P.S. Awana, H. Kishan, C.P. Srivastava, Near room temperature magneto-transport (TCR & MR) and magnetocaloric effect in Pr2/3Sr1/3MnO3:Ag2O composite. J. Alloy. Compd. 619, 151–156 (2015)

    Article  CAS  Google Scholar 

  25. F. Elleuch, M. Triki, M. Bekri, E. Dhahri, E.K. Hlil, A-site-deficiency-dependent structural, magnetic and magnetoresistance properties in the Pr0.6Sr0.4MnO3 manganites. J. Alloy. Compd. 620, 249 (2015)

    Article  CAS  Google Scholar 

  26. R.C. Bhatt, S.K. Singh, P.C. Srivastava, S.K. Agarwal, V.P.S. Awana, Impact of sintering temperature on room temperature magneto-resistive and magneto-caloric properties of Pr2/3Sr1/3MnO3. J. Alloy. Compd. 580, 377 (2013)

    Article  CAS  Google Scholar 

  27. A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Material characteristics of perovskite manganese oxide thin films for bolometric applications. Appl. Phys. Lett. 71, 2535 (1997)

    Article  CAS  Google Scholar 

  28. A. Lisauskas, S.I. Khartsev, A. Grishin, Tailoring the colossal magnetoresistivity: La0.7(Pb0.63Sr0.37)0.3MnO3 thin-film uncooled bolometer. Appl. Phys. Lett. 77, 756 (2000)

    Article  CAS  Google Scholar 

  29. X.R. Pu, H.J. Li, G. Dong, K.L. Chu, S. Zhang, Y. Liu, X.H. Yu, X. Liu, Electrical transport properties of (Pr1-xLax)0.7Sr0.3MnO3 (0 ≤ x ≤ 0.3) polycrystalline ceramics prepared by sol-gel process for potential room temperature bolometer use. Ceram. Int. 46, 4984 (2020)

    Article  CAS  Google Scholar 

  30. S.Z. Jin, S. Zhang, H.J. Li, K.L. Chu, X.H. Yu, X.L. Guan, X.R. Pu, X. Liu, A-site Na-doping to enhance room-temperature TCR of La1-xNaxMnO3 polycrystalline ceramics. Mater. Today Commun. 28, 10 (2021)

    Google Scholar 

  31. M. Wali, R. Skini, M. Khlifi, M. Bekri, E. Dhahri, E.K. Hlil, Double metal insulator transitions and magnetoresistance properties in La0.8Na0.2-x□xMnO3 oxides. Ceram. Int. 42, 5699 (2016)

    Article  CAS  Google Scholar 

  32. R. Thaljaoui, W. Boujelben, M. Pekala, K. Pekala, J. Antonowicz, J.F. Fagnard, P. Vanderbemden, S. Dabrowska, J. Mucha, Structural, magnetic and magneto-transport properties of monovalent doped manganite Pr0.55K0.05Sr0.4MnO3. J. Alloy. Compd. 611, 427 (2014)

    Article  CAS  Google Scholar 

  33. P.T. Phong, L.H. Nguyen, D.H. Manh, N.X. Phuc, I.J. Lee, Electrical transport and temperature coefficient of resistance in polycrystalline La0.7-xAgxCa0.3MnO3 pellets: analysis in terms of a phase coexistence transport model and phase separation model. Physica B 425, 6 (2013)

    Article  CAS  Google Scholar 

  34. P.K. Siwach, V.P.S. Awana, H. Kishan, R. Prasad, H.K. Singh, S. Balamurugan, E. Takayama-Muromachi, O.N. Srivastava, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3-xAgxMnO3 thin films. J. Appl. Phys. 101, 5 (2007)

    Article  Google Scholar 

  35. K. Wu, X. Guan, H. Li, X. Gu, Z. Yu, S. Jin, X. Yu, Y. Yan, L. Zhao, H. Liu, X. Liu, Enhanced electrical transport properties of polycrystalline La0.67SrxCa0.23-xK0.1MnO3 ceramics through A-site multielement co-doping. Ceram. Int. 49, 1344 (2023)

    Article  CAS  Google Scholar 

  36. Y.X. Yan, S.Z. Jin, X.H. Yu, X.L. Guan, K.K. Wu, L.M. Zhao, X. Gu, X. Liu, Co-optimization of Na and K doping for improved room-temperature TCR of La0.7(Na0.3-xKx)MnO3 polycrystalline ceramics. Ceram. Int. 48, 24290 (2022)

    Article  CAS  Google Scholar 

  37. S.Z. Jin, S. Zhang, X.H. Yu, X.L. Guan, H.J. Li, K.L. Chu, X.R. Pu, X. Gu, X. Liu, Impact of K doping on room-temperature temperature coefficient of resistivity of La0.7(Ag0.3-xKx)MnO3 (0.160 ≤ x ≤ 0.180) polycrystalline ceramics. Ceram. Int. 47, 24721 (2021)

    Article  CAS  Google Scholar 

  38. G.H. Jonker, J. Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337 (1950)

    Article  CAS  Google Scholar 

  39. E. Vladimirova, V. Vassiliev, A. Nossov, Synthesis of La1-xPbxMnO3 colossal magnetoresistive ceramics from co-precipitated oxalate precursors. J. Mater. Sci. 36, 1481 (2001)

    Article  CAS  Google Scholar 

  40. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Sect A 32, 751–767 (1976)

    Article  Google Scholar 

  41. P.K. Siwach, P. Srivastava, H.K. Singh, A. Asthana, Y. Matsui, T. Shripathi, O.N. Srivastava, Effect of multielement doping on low-field magnetotransport in La0.7-xMmxCa0.3MnO3 (0.0 ≤ x ≤ 0.45) manganite. J. Magn. Magn. Mater. 321, 1814–1820 (2009)

    Article  CAS  Google Scholar 

  42. S.G. Choi, H.S. Lee, G.Y. Yeom, H.H. Park, Investigation of the properties of Ba-substituted La0.7Sr0.3-xBaxMnO3 perovskite manganite films for resistive switching applications. J. Electron. Mater. 42, 1196 (2013)

    Article  CAS  Google Scholar 

  43. F. Damay, C. Martin, A. Maignan, B. Raveau, Cation disorder and size effects upon magnetic transitions in Ln0.5A0.5MnO3 manganites. J Appl Phys 82, 6181 (1997)

    Article  CAS  Google Scholar 

  44. K.L. Chu, T. Sun, Y. Liu, G. Dong, S. Zhang, H.J. Li, X.R. Pu, X.H. Yu, X. Liu, Enhanced room temperature coefficient of resistivity (RT-TCR) and broad metal-insulator transition temperature (TMI) of La0.67Ca0.33-xAgxMnO3 polycrystalline ceramics. Ceram. Int. 45, 17073 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11674135), Yunnan Fundamental Research Projects (Grant No. 202201AS070035), and Analysis and Testing Foundation of Kunming University of Science and Technology (Grant No. 2021P20201130007).

Author information

Authors and Affiliations

Authors

Contributions

LZ, XP, and XL conceived and designed this study. Material preparation, data collection, and analysis were performed by LZ, YY, KW, XAG and XIG. The first draft of the manuscript was written by LZ. XAG, SJ, XY, and XL commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Pu, X., Guan, X. et al. Structural and electrical properties of monovalent K doping in Pr0.6(Sr1-xKx)0.4MnO3 polycrystalline ceramics. J Mater Sci: Mater Electron 34, 902 (2023). https://doi.org/10.1007/s10854-023-10271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10271-7

Navigation