Skip to main content
Log in

Improved room‐temperature TCR and MR of La0.9−xKxCa0.1MnO3 ceramics by A-sites vacancy and disorder degree adjustment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, polycrystalline La0.9−xKxCa0.1MnO3 (LKCMO) ceramics (A-sites = La, K, and Ca, 0.05 ≤ x ≤ 0.25) are successfully synthesized via the sol–gel process. The effects of vacancy and disorder degree (δ2) of A-sites cations on electromagnetic transport properties are investigated and performed by using a combination of double-exchange (DE) mechanism, phenomenological percolation (PP) model and Jahn–Teller (JT) effects. The results show that K+ ions, occupying the A-sites, leading to the A-sites vacancy and δ2 of A-sites cations, significantly influence the DE mechanism, JT effect and PP model. A-sites vacancy is confirmed by energy-dispersive spectroscopy and X-ray photoemission spectroscopy. The simultaneous presence of La3+, Ca2+ and K+ ions at A-sites influenced the δ2 of A-sites cations. At the optimal doping content x = 0.15, the maximum temperature coefficient of resistivity (TCR) is 9.7% K− 1 at 291.4 K, and the maximum magnetoresistance (MR) value is 35.2% at 295.03 K, respectively. In summary, LKCMO ceramics achieve room-temperature TCR and MR by A-sites vacancy and δ2 of A-sites cations adjustment, promising applications in uncooled infrared bolometer and magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.B. Goodenough, Electronic structure of CMR manganites. J. Appl. Phys. 81(8), 5330–5335 (1997)

    CAS  Google Scholar 

  2. A.-M. Haghiri-Gosnet, J.-P. Renard, CMR manganites: physics, thin films and devices. J. Phys. D 36(8), R127–R150 (2003)

    CAS  Google Scholar 

  3. R. Laiho, K. Lisunov, E. Lahderanta, V. Zakhvalinskii, V. Kozhevnikov, I. Leonidov, E. Mitberg, M. Patrakeev, Influence of the phase separation effect on low-field magnetic properties of LaBaMnO. J. Magn. Magn. Mater. 293(3), 892–902 (2005)

    CAS  Google Scholar 

  4. T. Wu, S. Ogale, J. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R. Greene, R. Ramesh, Venkatesan, a. Millis, electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86(26), 5998–6001 (2001)

    CAS  Google Scholar 

  5. L. Chen, J. Fan, W. Tong, D. Hu, Y. Ji, J. Liu, L. Zhang, L. Pi, Y. Zhang, H. Yang, Evolution of the intrinsic electronic phase separation in La0.6Er0.1Sr0.3MnO3 perovskite. Sci. Rep. 6, 6–14 (2016)

    Google Scholar 

  6. J. Fan, Y. Xie, Y. Zhu, F. Qian, Y. Ji, D. Hu, W. Tong, L. Zhang, L. Ling, C. Wang, C. Ma, H. Yang, Emergent phenomena of magnetic skyrmion and large DM interaction in perovskite manganite La0.8Sr0.2MnO3. J. Magn. Magn. Mater. 483, 42–47 (2019)

    CAS  Google Scholar 

  7. J. Fan, Y. Xie, Y.-E. Yang, C. Kan, L. Ling, W. Tong, C. Wang, C. Ma, W. Sun, Y. Zhu, H. Yang, Robust electronic phase separation on nanoscale of perovskite manganite La0.825Sr0.175MnO3. Int. Ceram. 45, 9179–9184 (2019)

    CAS  Google Scholar 

  8. L. Xu, J. Fan, Y. Zhu, Y. Shi, L. Zhang, L. Pi, Y. Zhang, D. Shi, Magnetocaloric effect and spontaneous magnetization in perovskite manganite Nd0.55Sr0.45MnO3. Mater. Res. Bull. 73, 187–191 (2016)

    CAS  Google Scholar 

  9. P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3s. Phys. Rev. B 55(5), 3015–3023 (1997)

    CAS  Google Scholar 

  10. D.M. Edwards, Ferromagnetism and electron-phonon coupling in the manganites. Adv. Phys. 51(5), 1259–1318 (2002)

    CAS  Google Scholar 

  11. X. Lang, H. Zhang, X. Xue, C. Li, X. Sun, Z. Liu, H. Nan, X. Hu, H. Tian, Rational design of La0.85Sr0.15MnO3@NiCo2O4 Core–Shell architecture supported on Ni foam for high performance supercapacitors. J. Power Sources 402, 213–220 (2018)

    CAS  Google Scholar 

  12. X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La1 – xSrxMnO3. Dalton Trans. 46(40), 13720–13730 (2017)

    CAS  Google Scholar 

  13. N.D. Sharma, S. Sharma, N. Choudhary, M.K. Verma, D. Singh, Comparative study of La0.5Nd0.2Ca0.3–xKMnO3 (x = 0.0 and 0.05) nanoparticles: Effect of A-cation size and calcination temperature. Ceram. Int. 45(11), 13637–13646 (2019)

    CAS  Google Scholar 

  14. S.P. Altintas, A. Amira, N. Mahamdioua, A. Varilci, C. Terzioglu, Effect of Eu doping on structural and magneto-electrical properties of La0.7Ca0.3MnO3 manganites. J. Alloy. Compd. 509(13), 4510–4515 (2011)

    CAS  Google Scholar 

  15. W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetotransport, and magnetocaloric properties of La0.7Sr0.3–xAgxMnO3 perovskite manganites. J. Alloy. Compd. 453(1–2), 42–48 (2008)

    CAS  Google Scholar 

  16. T. Sun, Y. Liu, G. Dong, S. Zhang, Z. Li, K. Chu, X. Pu, H. Li, F. Ji, H. Zhang, Q. Chen, X. Liu, La0.67(Ca0.24Sr0.09)MnO3:xAg2O (0 ≤ x ≤ 0.25) composites with improved room-temperature TCR and MR for advanced uncooling infrared bolometers and magnetic sensors. Appl. Surf. Sci. 493, 448–457 (2019)

    CAS  Google Scholar 

  17. J. Fan, L. Pi, W. Tong, S. Xu, J. Gao, C. Zha, Y. Zhang, Percolative conductivity in the La0.67Sr0.33Mn1ÀxMgxO3 system. Phys. Rev. B 68(9), 092407 (2003)

    Google Scholar 

  18. P. Graziosi, A. Gambardella, M. Prezioso, A. Riminucci, I. Bergenti, N. Homonnay, G. Schmidt, D. Pullini, D. Busquets-Mataix, Polaron framework to account for transport properties in metallic epitaxial manganite films. Phys. Rev. B 89(21), 214411 (2014)

    Google Scholar 

  19. M. Maschek, D. Lamago, J.P. Castellan, A. Bosak, D. Reznik, F. Weber, Polaronic metal phases in La0.7Sr0.3MnO3 uncovered by inelastic neutron and x-ray scattering. Phys. Rev. B 93(4), 045112 (2016)

    Google Scholar 

  20. M. Abassi, N. Dhahri, J. Dhahri, E.K. Hlil, Percolation model of La0.67–xYxBa0.23Ca0.1MnO3 composites. Chem. Phys. 436–437, 40–45 (2014)

    Google Scholar 

  21. M. Sahana, R.N. Singh, C. Shivakumara, N.Y. Vasanthacharya, M.S. Hegde, S. Subramanian, V. Prasad, S.V. Subramanyam, Colossal magnetoresistance in epitaxial La(1–xy)NayMnO3 thin film. Appl. Phys. Lett. 70(21), 2909–2911 (1997)

    CAS  Google Scholar 

  22. S. Zhang, G. Dong, Y. Liu, H. Li, K. Chu, X. Pu, X. Yu, X. Liu, Effect of Na-doping on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3–xNax)0.3MnO3 polycrystalline ceramics. Ceram. Int. 46(1), 584–591 (2020)

    Google Scholar 

  23. F. Ling, H. Zhang, L. Li, P. Yu, Y. Li, S. Yang, Q. Chen, Effect of sintering temperature on structural and electrical transport properties of La0.7Ca0.28K0.02MnO3 ceramics. Ceram. Int. 46(16), 25949–25955 (2020)

    CAS  Google Scholar 

  24. L. Li, H. Zhang, X. Liu, P. Sun, C. Wang, X. Wang, B. Li, G. Liang, Q. Chen, Structure and electromagnetic properties of La0.7Ca0.3–xKMnO3 polycrystalline ceramics. Ceram. Int. 45(8), 10558–10564 (2019)

    CAS  Google Scholar 

  25. D. Li, Q. Chen, Z. Li, H. Zhang, Y. Zhang, Structure, electrical and magnetic properties of La0.67Ca0.33–xKxMnO3 polycrystalline ceramic. J. Mater. Sci.: Mater. Electron. 29(3), 1808–1816 (2017)

    Google Scholar 

  26. W. Xia, L. Li, H. Wu, P. Xue, X. Zhu, Molten salt route of La1 – xCaxMnO3 nanoparticles: microstructural characterization, magnetic and electrical transport properties. Mater. Charact. 131, 128–134 (2017)

    CAS  Google Scholar 

  27. Y. Zhao, X. Jia, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, D. O’Hare, T. Zhang, Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 6(6), 1501974 (2016)

    Google Scholar 

  28. S. Qi, J. Feng, X. Xu, J. Wang, X. Hou, M. Zhang, The growth process of rod-shaped La0.7Sr0.3MnO3 in solid state method. J. Alloy. Compd. 478(1–2), 317–320 (2009)

    CAS  Google Scholar 

  29. K. Cherif, A. Belkahla, J. Dhahri, Impedance studies of La0.6Gd0.1Sr0.3Mn0.9In0.1O3 manganite prepared by the sol-gel method. J. Alloy. Compd. 777, 358–363 (2019)

    CAS  Google Scholar 

  30. R. Kamila, B. Kurniawan, The effect of Ag-doping (x = 0 and 0.05) on structural and morphological La0.8–xAgxCa0.2MnO3 material synthesized by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 496, 012019 (2019)

    CAS  Google Scholar 

  31. K.Y. Pan, S.A. Halim, K.P. Lim, W.M. Daud, S.K. Chen, Effect of sintering temperature on microstructure, electrical and magnetic properties of La0.85K0.15MnO3 prepared by sol-gel method. J. Supercond. Novel Magn. 25(4), 1177–1183 (2011)

    Google Scholar 

  32. W. Xia, H. Wu, P. Xue, X. Zhu, Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res. Lett. 13(1), 135 (2018)

    Google Scholar 

  33. K.C. Hongjiang Li, X.P.T. Sun, G. Dong, Y. Liu, S. Zhang, X. Liu, Dependence of the electrical and magnetic properties of La0.845Sr0.155MnO3:Ag0.4 ceramics on its sintering time. J. Mater. Sci.: Mater. Electron. 30, 12647–12658 (2019)

    Google Scholar 

  34. B.R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in Halides and Chaleogenides. Acta Cryst. A 32, 751–767 (1976)

    Google Scholar 

  35. S. Kumar, G.D. Dwivedi, S. Kumar, R.B. Mathur, U. Saxena, A.K. Ghosh, A.G. Joshi, H.D. Yang, S. Chatterjee, Structural, transport and optical properties of (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals: a wide band-gap magnetic semiconductor. Dalton Trans. 44(7), 3109–3117 (2015)

    CAS  Google Scholar 

  36. H. Li, K. Chu, X. Pu, S. Zhang, G. Dong, Y. Liu, X. Liu, A-site K-doping to enhance room-temperature TCR of polycrystalline La0.8Sr0.2–xKMnO3 ceramics. J. Alloy Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156417

    Article  Google Scholar 

  37. I.A. Abdel-Latif, A.A. Ismail, H. Bouzid, A. Al-Hajry, Synthesis of novel perovskite crystal structure phase of strontium doped rare earth manganites using sol gel method. J. Magn. Magn. Mater. 393, 233–238 (2015)

    CAS  Google Scholar 

  38. P.T. Phong, S.J. Jang, B.T. Huy, Y.-I. Lee, I.-J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2–xMnO3 (0 < x < 0.2). J. Mater. Sci. 24, 2292–2301 (2013)

    CAS  Google Scholar 

  39. S. Kumar, G.D. Dwivedi, J. Lourembam, S. Kumar, U. Saxena, A.K. Ghosh, H. Chou, S. Chatterjee, Particle size dependence on the structural, transport and optical properties of charge-ordered Pr0.6Ca0.4MnO3. J. Alloy. Compd. 649, 1094–1101 (2015)

    CAS  Google Scholar 

  40. S. Keshri, S. Biswas, P. Wiśniewski, Studies on characteristic properties of superparamagnetic La0.67Sr0.33–xKxMnO3 nanoparticles. J. Alloy. Compd. 656, 245–252 (2016)

    CAS  Google Scholar 

  41. L.Q. Wu, S.Q. Li, Y.C. Li, Z.Z. Li, G.D. Tang, W.H. Qi, L.C. Xue, L.L. Ding, X.S. Ge, Presence of monovalent oxygen anions in oxides demonstrated using X-ray photoelectron spectra. Appl. Phys. Lett. 108(2), 021905 (2016)

    Google Scholar 

  42. P. Zhang, S. Zhu, X. Liu, J. Peng, T.W. KIM, H.U. Habermeier, Effect of thermal annealing on structural, electrical, and magnetic properties of Ag-doped La0.67Ca0.33MnO3&nbsp;thin films grown on LaAlO3&nbsp;substrates. Jpn. J. Appl. Phys. 45(2A), 726–729 (2006)

    Google Scholar 

  43. P. Peng, Y. Deng, J. Niu, L. Shi, Y. Mei, S. Du, J. Liu, D. Xu, Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J. Adv. Ceram. 9(6), 683–692 (2020)

    CAS  Google Scholar 

  44. R. Das, R.N.P. Choudhary, Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm2NiMnO6. J. Adv. Ceram. 8(2), 174–185 (2019)

    CAS  Google Scholar 

  45. A. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1–xCrxO3 (0.15, 0.20 and 0.25) manganite oxide. Dalton Trans. 44(12), 5620–5627 (2015)

    CAS  Google Scholar 

  46. T. Sun, F. Ji, Y. Liu, G. Dong, S. Zhang, Q. Chen, X. Liu, La1 – xSrxMnO3:Ag0.2 (0.1 ≤ x ≤ 0.2) ceramics with large room-temperature TCR for uncooled infrared bolometers. J. Eur. Ceram. Soc. 39(2–3), 352–357 (2019)

    CAS  Google Scholar 

  47. T. Sun, J. Jiang, Q. Chen, X. Liu, Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceram. Int. 44(8), 9865–9874 (2018)

    CAS  Google Scholar 

  48. G. Dong, T. Sun, F. Ji, Y. Liu, S. Zhang, Z. Yang, X. Yu, Y. Duan, Z. Li, X. Liu, Improved electrical transport properties of polycrystalline La0.8(Ca0.12Sr0.08)MnO3 ceramics by Ag2O doping. RSC Adv. 9(4), 1939–1948 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to the support of the National Natural Science Foundation of China (Grant No. 11674135), the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Li, H., Li, Z. et al. Improved room‐temperature TCR and MR of La0.9−xKxCa0.1MnO3 ceramics by A-sites vacancy and disorder degree adjustment. J Mater Sci: Mater Electron 32, 8848–8862 (2021). https://doi.org/10.1007/s10854-021-05558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05558-6

Navigation