Skip to main content
Log in

X-ray Pole figure analysis for orienting TGSM grown bulk ZnTe crystal for Terahertz device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnTe crystal is an electro-optical crystal which is extensively utilized for Terahertz generation and detection in various spectroscopic, surveillance and defence applications. Precise orientation of ZnTe bulk crystal along (110) is very important for obtaining maximum terahertz response from ZnTe crystal. This paper reports growth of ZnTe crystal by temperature gradient solvent method (TGSM) at controlled low temperature ~ 1060 °C with main thrust on the use of X-ray Pole figure analysis to precisely orient the grown crystal along (110) orientation. The paper elaborates various steps in X-ray Pole figure technique to obtain precise orientation corrections in the form of crystal tilt and rotation values for the unoriented cut wafer providing adequate explanation on the interpretation and analysis of X-ray Pole figure data. Required (110) orientation of the oriented cut ZnTe crystal wafer is ascertained by X-ray pole figure and X-ray diffraction analysis. Both unoriented and (110) oriented ZnTe crystal wafers are analysed by Resonant Raman spectroscopy to study the effect of precise orientation on Raman scattering. Intensity of longitudinal optic multiphonon peaks in the resonant Raman spectra are enhanced in the (110) oriented ZnTe wafer. Finally, terahertz spectroscopy of (110) ZnTe is performed to evaluate the terahertz response of fabricated (110) ZnTe substrates which shows a high transmittance (~ 70%) in the terahertz region and very strong electro-optic terahertz detection which is attributed to controlled low-temperature growth and precise orientation cutting along <110> direction of ZnTe crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study will be available on request from the corresponding author.

References

  1. B. Bozzini, M.A. Baker, P.L. Cavallotti, E. Cerri, C. Lenardi, Electro-deposition of ZnTe for photovoltaic cells. Thin Solid Films 361–362, 388–395 (2000)

    Article  Google Scholar 

  2. K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, O. Oda, ZnTe pure green light-emitting diodes fabricated by thermal diffusion. J. Cryst. Growth 214–215, 1080–1084 (2000)

    Article  Google Scholar 

  3. N. Srimathy, A.R. Kumar, Deposition and characterisation of zinc telluride as a back surface field layer in photovoltaic applications, mechanics. Mater. Sci. Eng. MMSE J. (2017). https://doi.org/10.2412/mmse.32.15.18

    Article  Google Scholar 

  4. K. Sato, S. Adachi, Optical properties of ZnTe. J. Appl. Phys. 73, 926 (1993)

    Article  CAS  Google Scholar 

  5. S.L. Dexheimer, Terahertz Spectroscopy-Principles and Applications, 1st edn. (CRC Press, Boca Raton, 2008)

    Google Scholar 

  6. F. Blanchard, L. Razzari, H.C. Bandulet, Generation of 1.5μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15(20), 13212–13220 (2007)

    Article  CAS  Google Scholar 

  7. A. Nahata, A.S. Weling, T.F. Heinz, A wideband coherent terahertzspectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321 (1996)

    Article  CAS  Google Scholar 

  8. T.R. Sliker, J.M. Jost, Linear electro-optic effect and refractive indices of cubic ZnTe. J. Opt. Soc. Am. 56, 130–131 (1966)

    Article  CAS  Google Scholar 

  9. Q. Wu, X.C. Zhang, Ultrafast electro optic field sensors. Appl. Phys. Lett. 68, 1604 (1996)

    Article  CAS  Google Scholar 

  10. T. Asahi, T. Yabe, K. Sato, ZnTe single crystal growth by the liquid encapsulated pulling method. Phys. Status. Solidi. 241, 648–651 (2004)

    Article  CAS  Google Scholar 

  11. T. Asahi, K. Sato, Growth of large diameter ZnTe single crystals by the double crucible liquid encapsulated pulling method. Phys. Status. Solidi. C 11, 1167–1173 (2014)

    Article  CAS  Google Scholar 

  12. A.B. Trigubó, M.C. Di Stefano, U. Gilabert, A.M. Martínez, R. D’Eelía, H. Cánepa, E. Heredia, M.H. Aguirre, TEM, chemical etching and FTIR characterization of ZnTe grown by physical vapor transport. Cryst. Res. Technol. 45, 817–824 (2010)

    Article  Google Scholar 

  13. R. Triboulet, K.P. Van, G. Didier, “Cold travelling heater method”, a novel technique of synthesis, purification and growth of CdTe and ZnTe. J. Cryst. Growth 101, 216–220 (1990)

    Article  CAS  Google Scholar 

  14. M. Shkir, G. Bhagavannarayana, M.A. Wahab, K.K. Maurya, Characterization of ZnTe single crystal grown by Vertical Bridgman Technique using two zone tubular furnace: An important material for optoelectronic devices. Optik 124, 1995–1999 (2013)

    Article  CAS  Google Scholar 

  15. Y. Seki, K. Sato, O. Oda, Growth of large-diameter ZnTe single crystals by the vertical gradient freezing method. J. Cryst. Growth 229, 74–78 (2001)

    Article  Google Scholar 

  16. C.H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, M. Dudley, G.-D. Yao, W. Zhou, Growth of ZnTe by physical vapor transport and travelling heater method. J. Cryst. Growth 128, 627–632 (1993)

    Article  Google Scholar 

  17. R. Yang, W. Jie, H. Liu, Growth of Zn Te single crystals from Te solution by vertical Bridgman method with ACRT. J. Cryst. Growth 400, 27–33 (2014)

    Article  CAS  Google Scholar 

  18. M. Jin, W.H. Yang, X.H. Wang, R.B. Li, Y.D. Xu, J.Y. Xu, Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Met. 40(2021), 858–864 (2021)

    Article  CAS  Google Scholar 

  19. Y. Xu, W. Bai, L. Guo, L. Ji, B. Xiao, C. Zhang, B. Jin, W. Jie, Comparison of ZnTe bulk crystals grown by the temperature gradient solvent method using elemental and compound materials. Opt. Mater. Express 6(10), 3309 (2016)

    Article  CAS  Google Scholar 

  20. Y. Wei, P. Xie, H. Lei, Z. Lu, C. Liu, B.B. Zhang, W. Yang, W. Jie, Luminescence and optical properties of Fe2+:ZnTe crystal grown by temperature gradient solution method. J. Alloys Compd. 805, 774–778 (2019)

    Article  CAS  Google Scholar 

  21. H. Liu, W. Bai, J. Feng, W. Jie, The synthesis of large-diameter ZnTe crystal for THz emitting and detection. J. Cryst. Growth 475, 115–120 (2017)

    Article  CAS  Google Scholar 

  22. H. Lei, C. Liu, P. Xie, Y. Wei, Z. Lu, B. Zhang, Y. Du, J. Dong, W. Jie, Growth of large-size high-quality ZnTe bulk crystals by traveling solvent melting zone method. J. Alloys Compds. 779, 706–711 (2019)

    Article  CAS  Google Scholar 

  23. J.T. Mullins, F. Dierre, B.K. Tanner, X-ray diffraction imaging of ZnTe crystals grown by the multi-tube physical vapour transport technique. J. Cryst. Growth 413, 61–66 (2015)

    Article  CAS  Google Scholar 

  24. A. Rice, Y. Jin, X.F. Ma, X.C. Zhang, D. Bliss, J. Larkin, M. Alexander, Terahertz optical rectification from (110) zincblende crystals. Appl. Phys. Lett. 64, 1324 (1994)

    Article  CAS  Google Scholar 

  25. C.M. Tu, S.A. Ku, W.C. Chu, C.W. Luo, J.C. Chenand, C.C. Chi, Pulsed terahertz radiation due to coherent phonon-polariton excitation in <110>ZnTe crystal. J. Appl. Phys. 112, 093110 (2012)

    Article  Google Scholar 

  26. D.N. Erschens, D. Turchinovich, P.U. Jepsen, Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped Femto second laser pulses. J. Infrared Milli Terahz Waves 32, 1371–1381 (2011)

    Article  CAS  Google Scholar 

  27. W.R. Runyan, T.K.J. Shaffner, Semiconductor Measurements and Instrumentation (McGraw-Hill Professional Publishing, New York, 1998)

    Google Scholar 

  28. A. Pandey, S. Dalal, S. Dutta, A. Dixit, Structural characterization of polycrystalline thin films by X-ray diffraction techniques. J. Mater. Sci. Mater. Electron. 32(1), 1341–1368 (2021)

    Article  CAS  Google Scholar 

  29. S.K. Jangir, H.K. Malik, S. Dalal, A. Pandey, T. Srinivasan, K. Muraleedharan, R. Muralidharan, P. Mishra, X-ray pole figure analysis of catalyst free in As nanowires on Si substrate. Mater. Sci. Eng. B 225, 108–114 (2017)

    Article  CAS  Google Scholar 

  30. M. Agrawal, A. Jain, V. Kaushik, A. Pandey, B.R. Mehta, R. Muralidharan, Structural and vibrational properties of CVD grown few layers MoS2 on catalyst free PAMBE grown GaN nanowires on Si (111) substrates. J. Alloys Compds. 861, 157965 (2021)

    Article  CAS  Google Scholar 

  31. T. Nakasu, S. Yamashita, T. Aiba, S. Hattori, W. Sun, K. Taguri, F. Kazami, M. Kobayashi, Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy. J. Appl. Phys. 116, 163518 (2014)

    Article  Google Scholar 

  32. P. Capper, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  33. J.L. Birman, Theory of infrared and raman processes in crystals: selection rules in diamond and zinc blende. Phys. Rev. 131, 1489–1496 (1963)

    Article  CAS  Google Scholar 

  34. Q. Zhang, J. Zhang, M.I.B. Utama, B. Peng, M. de la Mata, J. Arbiol, Q. Xiong, Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B Condens. Matter 85, 085418 (2012)

    Article  Google Scholar 

  35. C. Kranert, R. Schmidt-Grund, M. Grundmann, Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap. New J. Phys. 15, 113048 (2013)

    Article  Google Scholar 

  36. R.M. Martin, C.M. Varma, Cascade theory of inelastic scattering of light. Phys. Rev. Lett. 26, 1241–1243 (1971)

    Article  CAS  Google Scholar 

  37. Z.C. Feng, S. Perkowitz, P. Becla, Multiple phonon overtones in ZnTe. Solid State Commun. 78(12), 1011–1014 (1991)

    Article  CAS  Google Scholar 

  38. R. Wang, W. Fang, P. Zhao, C. Zhang, L. Zhang, J. Ge, H. Zhang, J. Shao, S. Hu, X. Shen, N. Dai, Growth and characterization of <110> oriented ZnTe single crystal, in Proceedings SPIE 6835, Infrared Materials, Devices, and Applications, 683519 (2008)

  39. B. Xiao, M. Zhu, B. Zhang, J. Dong, L. Ji, H. Yu, X. Sun, W. Jie, Y. Xu, Optical and electrical properties of vanadium-doped ZnTe crystals grown by the temperature gradient solution method. Opt. Mater. Express 8(2), 431–439 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Seema Vinayak, Director, Solid State Physics Laboratory, DRDO for her guidance and the permission to publish this work. The authors also express their sincere thanks to Prof. S.S. Prabhu, Tata Institute of Fundamental Research, Mumbai for performing the Terahertz transmission and detection measurements on fabricated ZnTe substrates. Help from other colleagues is also acknowledged.

Funding

There is not any funding for current research work.

Author information

Authors and Affiliations

Authors

Contributions

SV: Conceptualization, Visualization, Writing-Original draft preparation AP: Conceptualization, Visualization, Writing-Original draft preparation, Writing-Reviewing and Editing, SD: Visualization, Validation, MS: Visualization, Validation, RR: Reviewing and Editing.

Corresponding author

Correspondence to Akhilesh Pandey.

Ethics declarations

Conflict of interest

I assure that this manuscript has not been submitted elsewhere for publication and all authors have been informed. There is not any conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Pandey, A., Dalal, S. et al. X-ray Pole figure analysis for orienting TGSM grown bulk ZnTe crystal for Terahertz device applications. J Mater Sci: Mater Electron 34, 817 (2023). https://doi.org/10.1007/s10854-023-10230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10230-2

Navigation