Skip to main content
Log in

Synthesis, growth, structure, experimental and theoretical characterization on a novel second-order nonlinear optical single crystal: Piperidin-1-ium 2-chloro-4-nitrobenzoate (P2CNB)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Piperidin-1-ium 2-chloro-4-nitrobenzoate (P2CNB), an organic second-order nonlinear optical material, was successfully synthesized, and single crystals were grown adopting a slow cooling solution growth approach. Single-crystal X-ray diffraction revealed that the title material belongs to a non-centrosymmetric space group of Fdd2 in orthorhombic crystal system. The powder XRD investigation confirms the crystallographic perfection of the produced crystal, and the same was refined using Rietveld refinement method. The characteristic functional groups of P2CNB and their vibrational assignments were confirmed using Fourier-transform infrared analysis. The optical properties of the produced crystal were examined using a UV–Vis spectrometer, while the luminescence properties of the title compound, which was excited at 280 nm, were investigated using photoluminescence spectroscopy. With a lower cut-off wavelength of 392 nm and a bandgap of 3.15 eV, the crystal has 81% transparency. Thermogravimetric and differential thermal analysis (TG–DTA) was used to evaluate the thermal stability and decomposition point of the titled crystal. The second harmonic generation efficiency of the titled compound was found to be 21.73 times greater than that of KDP. Using the Z-scan technique, the third-order nonlinear susceptibility (χ(3)) of P2CNB was calculated and found to be 4.428 10–10 esu. The HOMO–LUMO, Molecular electrostatic potential and contour map of the title molecule were evaluated using DFT calculations at the B3LYP/6–311 +  + G (d, p) basis set. Various intermolecular interactions were discovered in the molecule using Hirshfeld surface studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The obtained crystallographic data of P2CNB crystal are deposited at Cambridge Crystallographic Data Centre (CCDC NO: 2160138). The other datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. G.J. Ashwell, Molecular Electronics (Research Studies Press, Taunton, 1992)

    Google Scholar 

  2. O. Ostroverkhova, Handbook of Organic Materials For Optical and (opto) Electronic Devices (Woodhead Publishing Limited, Oxford, Cambridge, 2013)

    Book  Google Scholar 

  3. B.K. Nayar, C.S. Winter, Opt. Quant. Electron. 22, 297–318 (1990)

    Article  CAS  Google Scholar 

  4. N. Tyagi, H. Yadav, A. Hussain, B. Kumar, J. Mol. Struct. 1224, 129190 (2021)

    Article  CAS  Google Scholar 

  5. L.R. Keerthi, S. Anand, S. Kalainathan, D. Jaikumar, Opt. Mater. 109, 110216 (2020)

    Article  CAS  Google Scholar 

  6. U. Gubler, C. Bosshard, Nat. Mater. 1, 209–210 (2002)

    Article  CAS  Google Scholar 

  7. K. lliopoulos, D. Kasprowicz, A. Majchrowski, E. Michalski, D. Gindre, B. Sahraoui, Appl. Phys. Lett. 103, 231103–231107 (2013)

    Article  Google Scholar 

  8. R.U. Mullai, Sreenadha Rao Kanuru, R. Arul Jothi, S. Gopinath, S. Vetrivel, Opt. Mater. 110, 110482 (2020)

    Article  CAS  Google Scholar 

  9. J. Zyss, F. Nicoud, Curr. Opin. Solid State Mater. Sci. 1, 533–546 (1996)

    Article  CAS  Google Scholar 

  10. F. Meyers, S.R. Marder, B.M. Pierce, J.L. Bredas, J. Am. Chem. Soc. 116, 10703–10714 (1994)

    Article  CAS  Google Scholar 

  11. J.F. Nicoud, R.J. Jwieg, D.S. Chemla, J. Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals (1 Academic Press, Cambridge, 1987)

    Google Scholar 

  12. V. Kathiravan, G. Satheesh Kumar, S. Pari, P. Selvarajan, J. Mol. Struct. 1223, 128958 (2020)

    Article  Google Scholar 

  13. T. Zhao, S. Ji, D. Zhong, F. Teng, S. Ullah, S. Hu, J. Tang, B. Teng, Opt. – Int. J. Light Electron Opt. 224, 165323 (2020)

    Article  CAS  Google Scholar 

  14. M. Krishna Priya, B.K. Revathi, V. Renuka, P. Samuel Asirvatham, Opt. Laser Technol. 111, 616–622 (2019)

    Article  CAS  Google Scholar 

  15. R.W. Boyd, Nonlinear Optics (Academic press, Sam Diego, 1992)

    Google Scholar 

  16. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  17. T. Uma Devi, N. Lowrence, R. Ramesh Babu, K. Ramamurthi, G. Bhagavannarayana, Specrochim Acta A. 71, 1667–1672 (2009)

    Article  Google Scholar 

  18. K. Jagannathan, S. Kalainathan, T. Gnanasekaran, N. Vijayan, G. Bhagavannarayana, Cryst. Res. Technol. 42(5), 471–476 (2007)

    Article  Google Scholar 

  19. A. Datta, S.K. Pati, J. Chem. Phys. 118, 8420–8427 (2003)

    Article  CAS  Google Scholar 

  20. G. De Matos, V. Venkataraman, E. Nogueria, M. Belsley, P.A. Criado, J. Dianez, E. Perez Garrido, Synth. Met. 115, 225–228 (2000)

    Article  Google Scholar 

  21. M. Vinolia, S. Shahil Kirupavathy, S. Eunice Jerusha, M. Infant. Muthu, Shyam Kumar, Opt. Mater. 122, 111731 (2021)

    Article  CAS  Google Scholar 

  22. Adriana Pianaro, Eduardo G.P.. Fox, Odair C. Bueno, Anita J. Marsaioli, Rapid configuration analysis of the solenopsins. Tetrahedron: Asymmetry. 23(9), 635–642 (2012)

    Article  CAS  Google Scholar 

  23. M.M. Nebe, T. Opatz, Adv. Heterocycl. Chem. 122, 191–244 (2017)

    Article  CAS  Google Scholar 

  24. G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A: Found. Crystallogr. 64, 112–122 (2008)

    CAS  Google Scholar 

  25. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem. 71, 3–8 (2015)

    Google Scholar 

  26. MERCURY 1.3, Cambridge Crystallographic Data Centre, CCDC Software Limited, Cambridge, UK, 2004

  27. A. Mathur, P. Halappa, C. Shivakumara, J. Mater. Sci: Mater. Electron. 29, 19951–19964 (2018)

    CAS  Google Scholar 

  28. T. Vijayakumar, I. Hubert Joe, C.P.R. Nair, M. Jazbinsek, V.S. Jayakumar, J. Raman, Spectrosc. 40, 52–63 (2009)

    CAS  Google Scholar 

  29. K. Meera, R. Muralidharan, R. Manyum, P. Ramasamy, J. Crystal Growth 263(1–4), 510–516 (2004)

    Article  CAS  Google Scholar 

  30. J.F. Pearson, M.A. Slifkin, Spectrochem Acta Part A Mol. Spectrosc. 28(12), 2403–2417 (1972)

    Article  CAS  Google Scholar 

  31. L. Rintoul, A.S. Micallef, S.E. Bottle, Spectrochimica. 70(4), 713–717 (2008)

    Article  CAS  Google Scholar 

  32. S. Gowri, T.U. Devi, S. Priya, C.S. Dilip, S. Selvanayagam, N. Lawrence, Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 143, 192–199 (2015)

    Article  CAS  Google Scholar 

  33. T. Jayanalina, G. Rajarajan, K. Boopathi, Dig. J. Nanomater. Biostruct. 10, 1139–1151 (2015)

    Google Scholar 

  34. G. Mannino, I. Deretzis, E. Smecca, A. La Magna, D. Cahen, J. Phys. Chem. Lett. 11(7), 2490–2496 (2020)

    Article  CAS  Google Scholar 

  35. K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K.K. Maurya, J. Philip, H. Soumya, P. Sreekanth, G. Bhagavannarayana, CrystEngComm 16, 9245–9254 (2014)

    Article  CAS  Google Scholar 

  36. P.P. Vinaya, A.N. Prabhu, K. Subrahmanya Bhat, V. Upadhyaya, Journal of Physics and Chemistry of Solids (2018) 31066–7

  37. S. Joseph, C. Jacob, J. Adv. Phys. 7(4), 497–502 (2018)

    Article  Google Scholar 

  38. A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, Crystal Research and technology. Wiley online library 42, 1097–1103 (2007)

    CAS  Google Scholar 

  39. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)

    Article  CAS  Google Scholar 

  40. R. Westlund, E. Glimsdal, M. Lindgren, R. Vestberg, C. Hawker, C. Lopes, E. Malmstrom, J. Mater. Chem. 18, 166–175 (2008)

    Article  CAS  Google Scholar 

  41. A. Subashini, R. Kumaravel, S. Leela, H. Evans, D. Sastikumar, K. Ramamurthi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78, 935–941 (2011)

    Article  CAS  Google Scholar 

  42. M.A. Spackman, J.J. McKinnon, Cryst. Eng. Comm. 4, 378–392 (2002)

    Article  CAS  Google Scholar 

  43. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Cryst. B 60, 627–668 (2004)

    Article  Google Scholar 

  44. S.K. Seth, Cryst. Eng. Comm. 15, 1772–1781 (2013)

    Article  CAS  Google Scholar 

  45. M.A. Spackman, J.J. McKinnon, D. Jayatilaka, Cryst. Eng. Comm 10, 377–388 (2008)

    CAS  Google Scholar 

  46. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer 3.1 (University of Western Australia, Crawley, 2013)

    Google Scholar 

  47. M. Arivazhagan, S. Jeyavijayan, J. Geethapriya, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 14–25 (2013)

    Article  CAS  Google Scholar 

  48. M. Arivazhagan, R. Gayathri, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116, 170–182 (2013)

    Article  CAS  Google Scholar 

  49. Gaussian 09 Program, Gaussian Inc., Wallingford CT, 2009.

  50. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision a 1 (Gaussian Inc, Wallingford, 2013)

    Google Scholar 

  51. T. Koopmans, Physica 1, 104–113 (1933)

    Article  CAS  Google Scholar 

  52. P. Politzer, J.S. Murray, Theoretical biochemistry and molecular biophysics: acomprehensive survey, in Electrostatic. Potential Analysis of Dibenzo-p-dioxin and Structurally Similar Systems in Relation to Their Biological Activities, Protein, vol. 2, ed. by D.L. Beveridge, R. Lavery (Adenine Press, Schenectady, 1991)

    Google Scholar 

  53. P. Politzer, J. Murray, Theor. Chem. Acc. 108, 134–142 (2002)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MV Conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft writing. SSK Conceptualization, methodology, formal analysis, investigation, writing—review and editing, supervision. SM Data curation, draft writing—review and editing.

Corresponding author

Correspondence to S. Shahil Kirupavathy.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest in this paper.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinolia, M., Kirupavathy, S.S. & Muthu, S. Synthesis, growth, structure, experimental and theoretical characterization on a novel second-order nonlinear optical single crystal: Piperidin-1-ium 2-chloro-4-nitrobenzoate (P2CNB). J Mater Sci: Mater Electron 34, 838 (2023). https://doi.org/10.1007/s10854-023-10209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10209-z

Navigation