Skip to main content
Log in

The role of defects in the structural and photocatalytic properties of Mg/B co-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg/B co-doped ZnO nanoparticles were synthesized by using the sol–gel technique to investigate the role of the defects on the structural, biological and photocatalytic properties. Single phases with ZnO wurtzite hexagonal structures were observed in the X-ray diffraction measurements. Scanning electron microscopy and transmission electron microscopy were used to determine the surface, particle size, and shapes of the nanoparticles. Electron dispersive spectroscopy was used to determine the elemental compositions of the nanoparticles. Photoluminescence spectrophotometry and positron annihilation lifetime spectroscopy were used to study the defect type, density and crystal quality of Mg/B co-doped ZnO nanoparticles. A broad visible emission band (including violet–blue-orange and red emissions) was observed. The violet–blue-orange and red emissions could be attributed to the O vacancies (VO), interstitial Zn (Zni), Zn vacancies (VZn), and the double charged oxygen vacancy (VO(++)), which were strongly dependent on the synthesis conditions and doping ratio. SEM images revealed that Mg/B-co-doped ZnO nanoparticle magnifications were dense, quasispherical, and agglomerating. The photocatalytic activities and blood compatibilities of Mg/B co-doped ZnO nanoparticles were studied by the photocatalytic degradation tests of crystal violet (CV) and hemolysis tests, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. P. Sadhukhan, M. Kundu, S. Chatterjee, N. Ghosh, P. Manna, J. Das, P.C. Sil, Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng., C 100, 129–140 (2019)

    Article  CAS  Google Scholar 

  2. C. Muthusamy, M. Ashokkumar, A. Boopathyraja, V.V. Priya, Enhanced ferro magnetism of (Cu, Fe/Mn) dual doped ZnO nanoparticles and assessment of in vitro cytotoxicity and antimicrobial activity for magnetically guided immunotherapy and hyperthermia applications. Vacuum 205, 111400 (2022)

    Article  CAS  Google Scholar 

  3. Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7, 19986–19993 (2015)

    Article  Google Scholar 

  4. B. Alfakes, C. Garlisi, J. Villegas, A. Al-Hagri, S. Tamalampudi, N.S. Rajput, M. Chiesa, Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO. Surf. Coat. Technol. 385, 125352 (2020)

    Article  CAS  Google Scholar 

  5. A.P. Wanninayake, B.C. Church, N. Abu-Zahra, Effect of ZnO nanoparticles on the power conversion efficiency of organic photovoltaic devices synthesized with CuO nanoparticles. AIMS Mater. Sci. 3(3), 927–937 (2016)

    Article  CAS  Google Scholar 

  6. A.A. Ahmad, M.H. Khazaleh, A.M. Alsaad, Q.M. Al-Bataineh, A.D. Telfah, Characterization of As-prepared PVA-PEO/ZnO-Al2O3-NPs hybrid nanocomposite thin films. Polym. Bull. 79(11), 9881–9905 (2022)

    Article  CAS  Google Scholar 

  7. H. Benali, B. Hartiti, F. Lmai, A. Batan, S. Fadili, P. Thevenin, Synthesis and characterization of Mg-doped ZnO thin-films for photovoltaic applications. Mater Today: Proc 66, 212–216 (2022)

    CAS  Google Scholar 

  8. Y. Guo, Z. Sun, Investigating folate-conjugated combinatorial drug loaded ZnO nanoparticles for improved efficacy on nasopharyngeal carcinoma cell lines. J. Exp. Nanosci. 15(1), 390–405 (2020)

    Article  CAS  Google Scholar 

  9. C. Li, H. Zhang, X. Gong, Q. Li, X. Zhao, Synthesis, characterization, and cytotoxicity assessment of N-acetyl-l-cysteine capped ZnO nanoparticles as camptothecin delivery system. Colloids Surf. B: Biointerfaces 174, 476–482 (2019)

    Article  CAS  Google Scholar 

  10. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A.J.M.S. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C 33, 91–98 (2013)

    Article  CAS  Google Scholar 

  11. A. Samanta, M.N. Goswami, P.K. Mahapatra, Optical properties and enhanced photocatalytic activity of Mg-doped ZnO nanoparticles. Phys. E. 104, 254–260 (2018)

    Article  CAS  Google Scholar 

  12. S. Benzitouni, M. Zaabat, M.S. Aida, J. Ebothe, J. Michel, B. Boudine, T. Saidani, Morphology and photocatalytic activity of porous (In, Mg) co-doped ZnO nanoparticles. Optik 156, 949–960 (2018)

    Article  CAS  Google Scholar 

  13. H.H. Kim, D.O. Kumi, K. Kim, D. Park, Y. Yi, S.H. Cho, W.K. Choi, Optimization of the electron transport in quantum dot light-emitting diodes by codoping ZnO with gallium (Ga) and magnesium (Mg). RSC Adv. 9(55), 32066–32071 (2019)

    Article  CAS  Google Scholar 

  14. H. Abdullah, H. Shuwanto, D.H. Kuo, Multifunctional Ni–Mg bimetal-activated Zn (O, S) for hydrogen generation and environmental remediation with simulated solar-light irradiation. Catal. Sci. Technol. 11(21), 7200–7216 (2021)

    Article  CAS  Google Scholar 

  15. E.R. Rwenyagila, I.N. Makundi, N.R. Mlyuka, M.E. Samiji, Dielectric anomalous peaks accenting ferroelectricity prospects of Li and Mg co-doped ZnO ceramics. Results Mater. 12, 100226 (2021)

    Article  CAS  Google Scholar 

  16. S. Jaballah, G. Neri, H. Dahman, N. Donato, L. El Mir, Development of a ternary AlMgZnO-based conductometric sensor for carbon oxides sensing. IEEE Trans. Instrum. Meas. 70, 1–7 (2021)

    Article  Google Scholar 

  17. S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. J. Alloy. Compd. 741, 622–632 (2018)

    Article  CAS  Google Scholar 

  18. S. Thomas, G. Gunasangkaran, V.A. Arumugam, S. Muthukrishnan, Synthesis and characterization of zinc oxide nanoparticles of solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol. Trace Elem. Res. 200, 2684–2697 (2022)

    Article  CAS  Google Scholar 

  19. M.T. Khorasani, A. Joorabloo, H. Adeli, P.B. Milan, M. Amoupour, Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo evaluation. Int. J. Biol. Macromol. 166, 200–212 (2021)

    Article  CAS  Google Scholar 

  20. A. Hoffman, X. Wu, J. Wang, A. Brodeur, R. Thomas, R. Thakkar, R.K. DeLong, Two-dimensional fluorescence difference spectroscopy of ZnO and Mg composites in the detection of physiological protein and RNA interactions. Materials 10, 1430 (2017)

    Article  Google Scholar 

  21. R.K. DeLong, R. Swanson, M.C. Niederwerder, P. Khanal, S. Aryal, R. Marasini, E.N. Mathew, Zn-based physiometacomposite nanoparticles: distribution, tolerance, imaging, and antiviral and anticancer activity. Nanomedicine 16, 1857–1872 (2021)

    Article  CAS  Google Scholar 

  22. T. Sun, Y. Yan, Y. Zhao, F. Guo, C. Jiang, Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS ONE 7, E43442 (2012)

    Article  CAS  Google Scholar 

  23. R. Mohammadinejad, M.A. Moosavi, S. Tavakol, D.Ö. Vardar, A. Hosseini, M. Rahmati, D.J. Klionsky, Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15(1), 4–33 (2019)

    Article  CAS  Google Scholar 

  24. T. Tanweer, N.F. Rana, I. Saleem, I. Shafique, S.M. Alshahrani, H.A. Almukhlifi, F. Menaa, Dental composites with magnesium doped zinc oxide nanoparticles prevent secondary caries in the alloxan-induced diabetic model. Int. J. Mol. Sci. 23(24), 15926 (2022)

    Article  CAS  Google Scholar 

  25. U. Khan, F.A. Jan, R. Ullah, N. Ullah, Comparative photocatalytic performance and therapeutic applications of zinc oxide (ZnO) and neodymium-doped zinc oxide (Nd–ZnO) nanocatalysts against acid yellow-3 dye: kinetic and thermodynamic study of the reaction and effect of various parameters. J. Mater. Sci: Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07483-0

    Article  Google Scholar 

  26. N.M. Almhana, Z.A. Naser, S.Z. Al-Najjar, Z.T. Al-Sharify, T.H. Nail, Photocatalytic degradation of textile dye from wastewater by using ZnS/TiO2 nanocomposites material. Egypt. J. Chem. 65(13), 481 (2022)

    Google Scholar 

  27. F. Zhao, D. Gao, X. Zhu, Y. Dong, X. Liu, H. Li, Rational design of multifunctional C/N-doped ZnO/Bi2 WO6 Z-scheme heterojunction for efficient photocatalytic degradation of antibiotics. Appl. Surf. Sci. 587, 152780 (2022)

    Article  CAS  Google Scholar 

  28. A. Serrano-Lázaro, F.A. Verdín-Betancourt, V.K. Jayaraman, A. Hernández-Gordillo, M. de Lourdes López-González, A. Sierra-Santoyo, M. Bizarro, Tracing the degradation pathway of temephos pesticide achieved with photocatalytic ZnO nanostructured films. Environ. Sci.: Nano 9(9), 3538–3550 (2022)

    Google Scholar 

  29. Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 91, 170–174 (2013)

    Article  CAS  Google Scholar 

  30. A. Pal, P. Mahamallik, S. Saha, A. Majumdar, Degradation of tetracycline antibiotics by advanced oxidation processes: application of MnO2 nanomaterials. Nat. Res. Eng. 2, 32–42 (2017)

    Google Scholar 

  31. V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 119, 197–206 (2012)

    Article  Google Scholar 

  32. I. Fatimah, G. Fadillah, I. Yanti, R.A. Doong, Clay-supported metal oxide nanoparticles in catalytic advanced oxidation processes: a review. Nanomaterials 12, 825 (2022)

    Article  CAS  Google Scholar 

  33. A.N. Rao, B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. J. Mol. Catal. A Chem. 306, 77–81 (2009)

    Article  CAS  Google Scholar 

  34. V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)

    Article  CAS  Google Scholar 

  35. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, N. Muensit, Optical, photocatalytic and bactericidal properties of Zn1− xLaxO and Zn1− xMgxO nanostructures prepared by a sol–gel method. Ceram. Int. 5, 5597–5608 (2013)

    Article  Google Scholar 

  36. W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, Y. Zhang, Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods. J. Hazard. Mater. 152, 172–175 (2008)

    Article  CAS  Google Scholar 

  37. J. Hu, R.G. Gordon, Deposition of boron doped zinc oxide films and their electrical and optical properties. J. Electrochem. Soc. 139, 2014 (1992)

    Article  CAS  Google Scholar 

  38. R.B.H. Tahar, N.B.H. Tahar, Boron-doped zinc oxide thin films prepared by sol-gel technique. J. Mater. Sci. 40, 5285–5289 (2005)

    Article  CAS  Google Scholar 

  39. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles. Mater. Res. Bull. 76, 48–61 (2016)

    Article  CAS  Google Scholar 

  40. X.L. Chen, B.H. Xu, J.M. Xue, Y. Zhao, C.C. Wei, J. Sun, X.H. Geng, Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition. Thin Solid Films 515, 3753–3759 (2007)

    Article  CAS  Google Scholar 

  41. S.Y. Lee, W.H. Lan, W.M. Chao, C.W. Tsai, M.C. Shih, Y.D. Wu, Y.T. Hsu, Boron-doped zinc oxide thin films fabricated by ultrasonic spray pyrolysis, In 2012 17th Opto-Electronics and Communications Conference, IEEE, 665–666

  42. V. Vinitha, M. Preeyanghaa, V. Vinesh, R. Dhanalakshmi, B. Neppolian, V. Sivamurugan, Two is better than one: Catalytic, sensing and optical applications of doped zinc oxide nanostructures. Emerg. Mater. 4, 1093–1124 (2021)

    Article  CAS  Google Scholar 

  43. L. Yang, Y.P. Zhang, J.W. Xu, H. Wang, Deposition and characterization of boron doped zno thin films by ultrasonic spray pyrolysis method. Appl. Mech. Mater. 475, 1280–1283 (2014)

    Google Scholar 

  44. H.J. Ali, Boron doped zinc oxide for ethanol and CO gas sensing. MJS 29, 150–154 (2018)

    Article  Google Scholar 

  45. S.T. Rattanachan, P. Krongarrom, T. Fangsuwannarak, Boron doping effects on the structural and optical properties of sol-gel transparent ZnO films. Key Eng. Mater. 547, 145–151 (2013)

    Article  Google Scholar 

  46. R.E. Nunez-Salas, A. Hernández-Ramírez, L. Hinojosa-Reyes, J.L. Guzmán-Mar, M. Villanueva-Rodriguez, M. de Lourdes Maya-Trevino, Cyanide degradation in aqueous solution by heterogeneous photocatalysis using boron-doped zinc oxide. Catal. Today 328, 202–209 (2019)

    Article  CAS  Google Scholar 

  47. S.D. Senol, O. Ozturk, C. Terzioğlu, Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 41, 11194–11201 (2015)

    Article  CAS  Google Scholar 

  48. L. Fanni, Explaining Morphological and Electrical Features of Boron-doped Zinc Oxide to Tailor New Electrodes for Photovoltaics. (No. THESIS). EPFL, 2016

  49. A.A. Ahmad, A.M. Alsaad, Q.M. Al-Bataineh, M.A. Al-Naafa, Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A 124, 1–13 (2018)

    Article  Google Scholar 

  50. R. Sakthivel, J. Malika, Characterızatıon of Mg doped ZnO nanoparticles synthesized by a novel green route using azadirachta indica gum and its antibacterial activity, World. J Pharm Pharm Sci. 6, 1189–1201 (2017)

    Google Scholar 

  51. S.D. Senol, Influence of Mg doping on the structural, optical, and electrical properties of Zn0.95Li0.05O Nanoparticles. Int. J. Appl. Ceram. Technol. 16, 138–145 (2019)

    Article  Google Scholar 

  52. A. Maru, H. Kamble, A. Kalarikkal, R. Shah, P. Bhanuse, N. Pradhan, Mg doped ZnO dilute magnetic oxides prepared by chemical method. Int. J. Chem. Phys. Sci 5, 44–49 (2020)

    Google Scholar 

  53. Y.B. Chan, V. Selvanathan, L.H. Tey, M. Akhtaruzzaman, F.H. Anur, S. Djearamane, M. Aminuzzaman, Effect of calcination temperature on structural, morphological and optical properties of copper oxide nanostructures derived from garcinia mangostana L. Leaf Extract. Nanomater. 12(20), 3589 (2022)

    Article  CAS  Google Scholar 

  54. T. Patra, A. Mohanty, L. Singh, S. Muduli, P.K. Parhi, T.R. Sahoo, Effect of calcination temperature on morphology and phase transformation of MnO2 nanoparticles: a step toward green synthesis for reactive dye adsorption. Chemosphere 288, 132472 (2022)

    Article  CAS  Google Scholar 

  55. M.L. Bari, S.H. Sonawane, S. Mishra, T.D. Deshpande, Surfactant assisted reactive crystallization of cobalt oxide nanoparticles in a tubular microreactor: effects of precursor concentrations and type of surfactants. React. Chem. Eng. 8, 355 (2023)

    Article  CAS  Google Scholar 

  56. Y. Li, Y. Li, A. Xie, Synthesis and optical properties of B-Mg co-doped ZnO nanoparticles. Coatings 11(8), 882 (2021)

    Article  Google Scholar 

  57. B. Yalcin, S. Ozcelik, K. Icin, K. Senturk, B. Ozcelik, L. Arda, Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 13068–13080 (2021)

    CAS  Google Scholar 

  58. J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl. Instrum. Methods. Phys. Res. B Nucl. Instrum. Meth. A 374, 235–244 (1996)

    Article  CAS  Google Scholar 

  59. D. Schrader, Compounds of positrons and positronium, principles and applications of positron & positronium. Chemistry 17, 17–36 (2003)

    Google Scholar 

  60. U. Yahsi, H. Deligöz, C. Tav, K. Ulutas, D. Deger, S. Yilmazturk, S. Yakut, Ionic conductivity of PVdF-co-HFP/LiClO4 in terms of free volume defects probed by positron annihilation lifetime spectroscopy. Radiat. Eff. 174, 214–228 (2019)

    Article  CAS  Google Scholar 

  61. U. Soykan, B.O. Sen, S. Cetin, U. Yahsi, C. Tav, A detailed survey for determination of the grafted semifluorinated acrylic compound effect on thermal, microstructural, free volume, mechanical and morphological features of HDPE. J. Fluor. Chem. 233, 109511 (2020)

    Article  CAS  Google Scholar 

  62. J.W. Rhim, S. Kuzeci, S. Roy, N. Akti, C. Tav, U. Yahsi, Effect of free volume on curcumin release from various polymer-based composite films analyzed using positron annihilation lifetime spectroscopy. Materials 14, 5679 (2021)

    Article  CAS  Google Scholar 

  63. Y. Kobayashi, W. Zheng, E.F. Meyer, J.D. McGervey, A.M. Jamieson, R. Simha, Free volume and physical aging of poly (vinyl acetate) studied by positron annihilation. Macromolecules 22, 2302–2306 (1989)

    Article  CAS  Google Scholar 

  64. Z. Yu, U. Yahsi, J. McGervey, A.M. Jamieson, R. Simha, Molecular weight-dependence of free volume in polystyrene studied by positron annihilation measurements. J. Polym. Sci. B Polym. Phys. 32, 2637–2644 (1994)

    Article  CAS  Google Scholar 

  65. S.D. Senol, E. Ozugurlu, L. Arda, The effect of cobalt and boron on the structural, microstructural, and optoelectronic properties of ZnO nanoparticles. Ceram. Int. 46, 7033–7044 (2020)

    Article  CAS  Google Scholar 

  66. B. Yalcin, D. Akcan, I.E. Yalcin, M.C. Alphan, K. Sentürk, I.I. Özyigit, L. Arda, Effect of mg doping on morphology, photocatalytic activity and related biological properties of Zn1-xMgxO nanoparticles. Turk. J. Chem. 44, 1177–1199 (2020)

    Article  CAS  Google Scholar 

  67. A. Guler, L. Arda, N. Dogan, C. Boyraz, E. Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceram. Int. 45, 1737–17451 (2019)

    Article  CAS  Google Scholar 

  68. C. Boyraz, N. Dogan, L. Arda, Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 43, 15986–15991 (2017)

    Article  CAS  Google Scholar 

  69. S.D. Senol, E. Ozugurlu, L. Arda, Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles. J. Alloys. Compd. 822, 153514 (2020)

    Article  CAS  Google Scholar 

  70. C. Yu, H. He, X. Liu, J. Zeng, Z. Liu, Novel SiO2 nanoparticle-decorated BiOCl nanosheets exhibiting high photocatalytic performances for the removal of organic pollutants, Chinese. J. Catal. 40, 1212–1221 (2019)

    CAS  Google Scholar 

  71. V.K. Mande, D.N. Bhoyar, S.K. Vyawahare, K.M. Jadhav, Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J. Mater. Sci.:Mater. Electron. 29, 15259–15270 (2018)

    CAS  Google Scholar 

  72. A.A. Dakhel, Structural, optical and electrical measurements on boron-doped CdO thin films. J. Mater. Sci. 46, 6925–6931 (2011)

    Article  CAS  Google Scholar 

  73. K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B Condens 405, 3180–3185 (2010)

    Article  CAS  Google Scholar 

  74. F. Barra, R. Espinoza-González, H. Fernández, F. Lund, A. Maurel, V. Pagneux, The use of ultrasound to measure dislocation density. JOM 67, 1856–1863 (2015)

    Article  Google Scholar 

  75. K.H. Markiewicz, P. Zembko, K. Półtorak, I. Misztalewska, S. Wojtulewski, A.M. Majcher, A.Z. Wilczewska, Magnetic nanoparticles with chelating shells prepared by RAFT/MADIX polymerization. New J. Chem. 40, 9223–9231 (2016)

    Article  CAS  Google Scholar 

  76. C.L. Hsu, Y.J. Li, H.J. Jian, S.G. Harroun, S.C. Wei, R. Ravindranath, H.T. Chang, Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale 10, 11808–11819 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Funds of Bahcesehir University (Project No. BAP.2019-01.04 and BAP.2021-01.27).

Funding

This work was supported by the Research Funds of Bahcesehir University Grant Numbers (BAP.2019-01.04) and (BAP.2021-01.27).

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content. Moreover, each author certifies that this work has not been and will not be submitted to other journals or published in any other publication before. KS: investigation, methodology, data curation, writing original draft, validation. BY: investigation, methodology, data curation, writing original draft, validation. IEY: investigation, methodology, data curation, validation. MCA: investigation, methodology, data curation, validation. MSS: investigation, methodology, data curation, validation. CT: investigation, methodology, data curation, validation. UY: investigation, methodology, writing original draft, data curation, validation LA: investigation, methodology, data curation, writing original draft, validation visualization, review, editing, supervision. On behalf of all coauthors.

Corresponding author

Correspondence to L. Arda.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senturk, K., Yalcin, B., Yalcin, I.E. et al. The role of defects in the structural and photocatalytic properties of Mg/B co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 34, 847 (2023). https://doi.org/10.1007/s10854-023-10208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10208-0

Navigation