Skip to main content
Log in

Surface morphology, structure, and dielectric relaxation investigations of ZnO/iron nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured metal oxide semiconductors exhibit attractive electrical properties, and, therefore, they are widely used in electronic applications. In this work, Fe-doped ZnO nanopowders were successfully synthesized via the sol–gel method. The structure of nanoparticles was characterized by scanning electron microscopy (SEM) and Fourier transform (FTIR) analysis. SEM shows very fine spherical-shaped particles in the powder, whereas FTIR shows bonding characteristics, functional groups, and intra- and intermolecular interactions. The relaxation peak is shifted towards higher frequencies with increasing temperature. The dielectric constant increases with increasing Fe concentration. Even at high temperatures, the dielectric constant is also increased due to the enhancement of the connection between the thermal motion of molecules and orientation polarization. The loss tangent decreases with increasing the temperature from 333 to 423 K. The activation energy for the relaxation is improved with increase Fe content in ZnO nanoparticles. The AC and DC conductivity gradually increases with increasing the temperature and frequency due to the increase in the number of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the author upon reasonable request.

References

  1. C.V. Ramana, V.V. Atuchin, V.G. Kesler, V.A. Kochubey, L.D. Pokrovsky, V. Shutthanandan, U. Becker, R.C. Ewing, Growth and surface characterization of sputter-deposited molybdenum oxide thin films. Appl. Surf. Sci. 253(12), 5368–5374 (2007). https://doi.org/10.1016/j.apsusc.2006.12.012

    Article  CAS  Google Scholar 

  2. C.V. Ramana, G. Carbajal-Franco, R.S. Vemuri, I.B. Troitskaia, S.A. Gromilov, V.V. Atuchin, Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure. Mater. Sci. Eng. B 174(1–3), 279–284 (2010). https://doi.org/10.1016/j.mseb.2010.03.060

    Article  CAS  Google Scholar 

  3. V. Garg, B.S. Sengar, V. Awasthi, A. Kumar, R. Singh, S. Kumar, C. Mukherjee, V.V. Atuchin, S. Mukherjee, Investigation of dual-ion beam sputter-instigated plasmon generation in TCOs: a case study of GZO. ACS Appl. Mater. Interfaces 10(6), 5464–5474 (2018)

    Article  CAS  Google Scholar 

  4. L. Dyshlyuk, O. Babich, S. Ivanova, N. Vasilchenco, V. Atuchin, I. Korolkov, D. Russakov, A. Prosekov, Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int. Biodeter. Biodeg. 146, 104821 (2020). https://doi.org/10.1016/j.ibiod.2019.104821

    Article  CAS  Google Scholar 

  5. M.W. Alam, M.Z. Ansari, M. Aamir, M. Waheed-Ur-rehman, N. Parveen, S.A. Ansari, Preparation and characterization of Cu and Al doped ZnO thin films for solar cell applications. Catalysts 12(2), 128 (2022). https://doi.org/10.3390/CRYST12020128

    Article  CAS  Google Scholar 

  6. F. Meng, X. Shi, Z. Yuan, H. Ji, W. Qin, Y.B. Shen, C. Xing, Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B Chem. 350, 130867 (2022). https://doi.org/10.1016/j.snb.2021.130867

    Article  CAS  Google Scholar 

  7. A.A. Azab, S.A. Esmail, M.K. Abdelamksoud, Studying the effect of cobalt doping on optical and magnetic properties of zinc oxide nanoparticles. Silicon 11, 165–174 (2019). https://doi.org/10.1007/s12633-018-9902-4

    Article  CAS  Google Scholar 

  8. C. Xu, G. Xu, Y. Liu, G. Wang, A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 122(3–4), 175–179 (2002). https://doi.org/10.1016/S0038-1098(02)00114-X

    Article  CAS  Google Scholar 

  9. J. Chang, M.Z. Ahmad, W. Wlodarski, E.R. Waclawik, Self-assembled 3D ZnO porous structures with exposed reactive {0001} facets and their enhanced gas sensitivity. Sensors 13(7), 8445–8460 (2013). https://doi.org/10.3390/S130708445

    Article  CAS  Google Scholar 

  10. M.L. Pivert, H. Suo, G. Tang, H. Qiao, Z. Zhao, N. Martin, C. Liu, Y.-L. Wang, Improving natural sunlight photocatalytic efficiency of ZnO nanowires decorated by iron oxide cocatalyst via a simple drop method. Mater. Chem. Phys. 275, 125304 (2022). https://doi.org/10.1016/j.matchemphys.2021.125304

    Article  CAS  Google Scholar 

  11. V.V. Atuchin, E.N. Galashov, A.S. Kozhukhov, L.D. Pokrovsky, V.N. Shlegel, Epitaxial growth of ZnO nanocrystals at ZnWO4(010) cleaved surface. J. Cryst. Growth 318(1), 1147–1150 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.172

    Article  CAS  Google Scholar 

  12. R. Lehru, J. Radhanpura, R. Kumar, D. Zala, V.S. Vadgama, H. Dadhich, V.R. Rathod, R.K. Trivedi, D.D. Pandya, N.A. Shah, P.S. Solanki, Studies on electrical properties of Fe doped ZnO nanostructured oxides synthesized by sol–gel method. Solid State Commun. 336, 114415 (2021). https://doi.org/10.1016/j.ssc.2021.114415

    Article  CAS  Google Scholar 

  13. A. Makarim, S.R. Mahdi, L.S. Yousefi, J.M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  15. S.R. Yousefia, A. Sobhani, H. Abbas Alshamsic, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021). https://doi.org/10.1039/D0RA10288A

    Article  Google Scholar 

  16. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  17. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  18. S.R.Y.M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  19. -SeyedeR. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  20. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  21. M.L. Dinesha, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Structural and dielectric properties of Fe doped ZnO nanoparticles. Indian J. Phys. 87(2), 147–153 (2013). https://doi.org/10.1007/s12648-012-0182-3

    Article  CAS  Google Scholar 

  22. C.B. Simões Valentin, R.L. de Sousa e Silva, P. Banerjee, A. Franco, Investigation of Fe-doped room temperature dilute magnetic ZnO semiconductors. Mater. Sci. Semicond. 96, 122–126 (2019). https://doi.org/10.1016/j.mssp.2019.02.021

    Article  CAS  Google Scholar 

  23. R. Elilarassi, G. Chandrasekaran, Optical, electrical and ferromagnetic studies of ZnO:Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 120–131 (2017). https://doi.org/10.1016/j.saa.2017.05.065

    Article  CAS  Google Scholar 

  24. T.A. Taha, E.M. Ahmed, A.I. El-Tantawy, A.A. Azab, Investigation of the iron doping on the structural, optical, and magnetic properties of Fe-doped ZnO nanoparticles synthesized by sol–gel method. J. Mater. Sci.: Mater. Electron. 33, 6368–6379 (2022). https://doi.org/10.1007/s10854-022-07809-6

    Article  CAS  Google Scholar 

  25. S. Kumar, K. Asokan, R.K. Singh, S. Chatterjee, D. Kanjilal, A.K. Ghosh, Structural and optical properties of ZnO and ZnO: Fe nanoparticles under dense electronic excitations. Int. J. Appl. Phys. 114(16), 164321 (2013). https://doi.org/10.1063/1.4826525

    Article  CAS  Google Scholar 

  26. A. Chinnammal Janaki, E. Sailatha, S. Gunasekaran, Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 144, 17–22 (2015). https://doi.org/10.1016/j.saa.2015.02.041

    Article  CAS  Google Scholar 

  27. Z.N. Kayani, F. Saleem, Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 119, 713–720 (2015). https://doi.org/10.1007/s00339-015-9019-1

    Article  CAS  Google Scholar 

  28. S. Roguai, A. Djelloul, Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Commun. 114362, 334–335 (2021). https://doi.org/10.1016/j.ssc.2021.114362

    Article  CAS  Google Scholar 

  29. S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater. Chem. Phys. 74(1), 83–91 (2002). https://doi.org/10.1016/S0254-0584(01)00402-3

    Article  CAS  Google Scholar 

  30. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Doping effects of Co2 + ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng. 89, 129–132 (2012). https://doi.org/10.1016/j.mee.2011.03.149

    Article  CAS  Google Scholar 

  31. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mat. Sci. 33(8), 2027–2037 (1998). https://doi.org/10.1023/A:1004398514901

    Article  CAS  Google Scholar 

  32. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993). https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  33. S.S. Fouad, B. Parditka, H.E. Atyia, E. Baradács, A.E. Bekheet, Z. Erdélyi, AC conductivity and dielectric parameters studies in multilayer TiO2/ZnO thin films produced via ALD technique. Chin. J. Phys. 77, 73–80 (2022). https://doi.org/10.1016/j.cjph.2022.02.001

    Article  CAS  Google Scholar 

  34. P. Gong, Y.-Y. Yang, W.-D. Ma, X.-Y. Fang, X.-L. Jing, Y.-H. Jia, M.-S. Cao, Transport and recombination properties of group-III doped SiCNTs. Phys. E: Low Dimens. Syst. Nanostruct. 128, 114578 (2021). https://doi.org/10.1016/j.physe.2020.114578

    Article  CAS  Google Scholar 

  35. Y.Y. Yang, P. Gong, W.D. Ma, R. Hao, X.Y. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B 30(6), 067803 (2021). https://doi.org/10.1088/1674-1056/abdb1e

    Article  CAS  Google Scholar 

  36. W.D. Ma, Y.L. Li, P. Gong, Y.H. Jia, X.Y. Fang, Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs. Chin. Phys. B 30(10), 107801 (2021). https://doi.org/10.1088/1674-1056/abf130

    Article  CAS  Google Scholar 

  37. S.S. Fouad, B. Parditka, A.E. Bekheet, H.E. Atyia, Z. Erdélyi, ALD of TiO2/ZnO mutilayers towards the understanding of optical properties and polarizability. Opt. Laser Technol. 140, 107035 (2021). https://doi.org/10.1016/j.optlastec.2021.107035

    Article  CAS  Google Scholar 

  38. T.A. Abdel–Baset, M. Belhaj, Structural characterization, dielectric properties and electrical conductivity of ZnO nanoparticles synthesized by co-precipitation route. Phys. B: Condens. Matter. 616, 413130 (2021). https://doi.org/10.1016/j.physb.2021.413130

    Article  CAS  Google Scholar 

  39. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J. Phys. Chem. Solids 65(6), 1121–1125 (2004). https://doi.org/10.1016/j.jpcs.2003.11.039

    Article  CAS  Google Scholar 

  40. T.A. Taha, M.H. Mahmoud, A. Hayat, Dielectric relaxation studies on PVC-Pb3O4 polymer nanocomposites. J. Mater. Sci.: Mater. Electron. 32(23), 27666–27675 (2021). https://doi.org/10.1007/s10854-021-07147-z

    Article  CAS  Google Scholar 

  41. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified pb (Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509(22), 6388–6394 (2011). https://doi.org/10.1016/j.jallcom.2011.03.003

    Article  CAS  Google Scholar 

  42. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallée, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D 46(6), 065308 (2013). https://doi.org/10.1088/0022-3727/46/6/065308

    Article  CAS  Google Scholar 

  43. Y.-H. Jia, P. Gong, S.-L. Li, W.-D. Ma, X.-Y. Fang, Y.-Y. Yang, M.-S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384(4), 126106 (2020). https://doi.org/10.1016/j.physleta.2019.126106

    Article  CAS  Google Scholar 

  44. T.A. Taha, S. Alomairy, S.A. Saad, H.O. Tekin, M.S. Al-Buriahi, Synthesis and dielectric relaxation behavior of 55B2O3–15SiO2–30Na2O: WO3 glass system. Ceram. Int. 47(14), 20201–20209 (2021). https://doi.org/10.1016/j.ceramint.2021.04.027

    Article  CAS  Google Scholar 

  45. C. Abed, A. Ben Gouider Trabelsi, F.H. Alkallas, S. Fernandez, H. Elhouichet, Transport mechanisms and dielectric features of Mg-Doped ZnO nanocrystals for device applications. Materials 15(6), 2265 (2022). https://doi.org/10.3390/ma15062265

    Article  CAS  Google Scholar 

  46. T.A. Abdel-Baset, Dielectric and optical properties of PVA/PAN doped TiO2 NPs. J. Mater. Sci.: Mater. Electron. 31(18), 15960–15967 (2020). https://doi.org/10.1007/s10854-020-04157-1

    Article  CAS  Google Scholar 

  47. W.K. Liu, S.S. Kong, X.X. Yu, Y.L. Li, L.Z. Yang, Y. Ma, X.Y. Fang, Interlayer coupling, electronic and optical properties of few-layer silicon carbide nanosheets. Mater. Today Commun. 34, 105030 (2023). https://doi.org/10.1016/j.mtcomm.2022.105030

    Article  CAS  Google Scholar 

  48. Y.M. Yusof, H.A. Illias, M.F.Z. Kadir, Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20(9), 1235–1245 (2014). https://doi.org/10.1007/s11581-014-1096-1

    Article  CAS  Google Scholar 

  49. M.M. Sanad, A.A. Azab, T.A. Taha, Introduced oxygen vacancies in cadmium ferrite anode materials via Zn2 + incorporation for high performance lithium-ion batteries. Mater. Sci. Semicond. 143, 106567 (2022). https://doi.org/10.1016/j.mssp.2022.106567

    Article  CAS  Google Scholar 

  50. M.M. Sanad, A.A. Azab, T.A. Taha, Inducing lattice defects in calcium ferrite anode materials for improved electrochemical performance in lithium-ion batteries. Ceram. Int. 48(9), 12537–12548 (2022). https://doi.org/10.1016/j.ceramint.2022.01.121

    Article  CAS  Google Scholar 

  51. M. Chaari, A. Matoussi, Effect of Sn2O3 doping on structural, optical and dielectric properties of ZnO ceramics. Mater. Sci. Eng. B 178(17), 1130–1139 (2013). https://doi.org/10.1016/j.mseb.2013.06.021

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors devised the main ideas and performed experimental measurements. TAT, AHA, AKE, and AAA discussed the results, made the conclusion and revision. All authors contributed to the final manuscript.

Corresponding author

Correspondence to T. A. Taha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Hereby, I the corresponding author declare that the authors have thoroughly read the Journal Policy. Here, I declare that this contribution is original and has not been published anywhere. Also, I declare that this article does not contain any plagiarized materials.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 420.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Alshammari, M., Alshammari, A.H. et al. Surface morphology, structure, and dielectric relaxation investigations of ZnO/iron nanostructures. J Mater Sci: Mater Electron 34, 739 (2023). https://doi.org/10.1007/s10854-023-10160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10160-z

Navigation