Skip to main content
Log in

Technological developments in amorphous and nanocrystalline soft magnetic ribbons with high saturation induction via patent analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The global development trend and key technologies of amorphous and nanocrystalline soft magnetic ribbons (ANSMR) were analyzed and assessed based on the patent documents of ANSMR with high saturation induction. It provides the annual patent application trends, top five application countries, distribution of ANSMR technologies, patentee types, and technology roadmap. The results show that China and Japan file the greatest number of ANSMR patents. The countries with the most active patent applications in the past three years were China, Korea, and Japan. Unlike patents in foreign countries mainly applied by enterprises, patents in China were mainly filed by enterprises and universities. As evidenced by international patent classification (IPC) and technology evolution, the ANSMR technologies mainly focus on alloy composition, ribbon preparation, and application technology. The composition design tends to be FeCuSiBPC, FeCuSiBPNbM, and FeCoCuSiBP alloys with higher Bs over 1.8 T. The preparation technology tends to have wider and thinner ribbons, multi-step field annealing, and fast annealing to reduce core loss. The application technology tends to higher-frequency and high-efficient situations such as wireless charging, high-frequency transformers, shielding, and motors. The technological development of the ANSMR trends to higher Bs and wider ribbons, as well as high-efficient and high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science (2018). https://doi.org/10.1126/science.aao0195

    Article  Google Scholar 

  2. G.E. Fish, Soft Magnetic Materials. Proc. IEEE 78, 947–972 (1990)

    Article  CAS  Google Scholar 

  3. K. Fujisaki, Magnetic Material for Motor Drive Systems: Fusion Technology of Electromagnetic Fields (Springer, Cham, 2019), pp.2789–3308

    Book  Google Scholar 

  4. P. Duwez, S.C.H. Lin, Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys. J. Appl. Phys. 38, 4096–4097 (1967)

    Article  CAS  Google Scholar 

  5. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-Based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1988)

    Article  CAS  Google Scholar 

  6. Y. Yoshizawa, K. Yamauchi, T. Yamane, H. Sugihara, Common mode choke cores using the new Fe-based alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6047–6049 (1988)

    Article  CAS  Google Scholar 

  7. G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013)

    Article  CAS  Google Scholar 

  8. F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4, 100027 (2019)

    Article  Google Scholar 

  9. H. Kockar, M. Alper, H. Kuru, T. Meydan, Magnetic anisotropy and its thickness dependence for NiFe alloy films electrodeposited on polycrystalline Cu substrates. J. Magn. Magn. Mater. 304(2), e736–e738 (2006)

    Article  CAS  Google Scholar 

  10. A. Tekgül, M. Alper, H. Kockar, M. Safak, O. Karaagac, The effect of Fe Content in electrodeposited CoFe/Cu multilayers on structural, magnetic and magnetoresistance characterizations. J. Nanosci. Nanotechnol. 10(11), 7783–7786 (2010)

    Article  Google Scholar 

  11. A. Tekgül, M. Alper, H. Kockar, Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses. J. Magn. Magn. Mater. 421(1), 472–476 (2017)

    Article  Google Scholar 

  12. M.E. McHenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater Sci. 44, 291–433 (1999)

    Article  CAS  Google Scholar 

  13. Z. Hou, P. Yan, B. Sun, H. Elshekh, B. Yan, An excellent soft magnetic Fe/Fe3O4-FeSiAl composite with high permeability and low core loss. Results Phys. 14, 102498 (2019)

    Article  Google Scholar 

  14. B. Sun, G.Q. Li, W.X. Zhao, Z. Shen, Y.H. Liu, P. Chen, Perpendicular coercive force of thick CoFeB thin films grown on silicon substrate. Mater. Lett. 123, 221–223 (2014)

    Article  CAS  Google Scholar 

  15. K. Suzuki, A. Makino, A. Inoue, T. Masumoto, Soft magnetic properties of nanocrystalline bcc Fe–Zr–B and Fe–M–B–Cu (M=transition metal) alloys with high saturation magnetization (invited). J. Appl. Phys. 70, 6232–6237 (1991)

    Article  CAS  Google Scholar 

  16. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B Alloys with Ultrafine Grain Structure. Mater. Trans. JIM 31, 743–746 (1990)

    Article  CAS  Google Scholar 

  17. M.A. Willard, D.E. Laughlin, M.E. McHenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris, Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84(12), 6773–6777 (1998)

    Article  CAS  Google Scholar 

  18. Y. Yoshizawa, S. Fujii, D.H. Ping, M. Ohnuma, K. Hono, Magnetic properties of nanocrystalline FeMCuNbSiB alloys (M: Co, Ni). Scripta. Mater. 48, 863–868 (2003)

    Article  CAS  Google Scholar 

  19. M. Ohnuma, D. Ping, T. Abe, H. Onodera, K. Hono, Y. Yoshizawa, Optimization of the microstructure and properties of Co-substituted Fe–Si–B–Nb–Cu nanocrystalline soft magnetic alloys. J. Appl. Phys. 93, 9186 (2003)

    Article  CAS  Google Scholar 

  20. A.D. Wang, C.L. Zhao, H. Men, A.N. He, C.T. Chang, X.M. Wang, R.W. Li, Fe-based amorphous alloys for wide ribbon production with high B-s and outstanding amorphous forming ability. J. Alloy. Compd. 630, 209–213 (2015)

    Article  CAS  Google Scholar 

  21. H. Li, A. Wang, T. Liu, P. Chen, A. He, Q. Li, J. Luan, C.-T. Liu, Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater. Today 42, 49–56 (2021)

    Article  Google Scholar 

  22. J.G. Wang, H. Zhao, C.X. Xie, C.T. Chang, S.M. Zhou, J.Q. Feng, J.T. Huo, W.H. Li, In-situ synthesis of nanocrystalline soft magnetic Fe-Ni-Si-B alloy. J. Alloy. Compd. 790, 524–528 (2019)

    Article  CAS  Google Scholar 

  23. X. Fan, M. Jiang, T. Zhang, L. Hou, C. Wang, B. Shen, Thermal, structural and soft magnetic properties of FeSiBPCCu alloys. J. Non-Cryst. Solids 533, 119941 (2020)

    Article  CAS  Google Scholar 

  24. F. Kong, A. Wang, X. Fan, H. Men, B. Shen, G. Xie, A. Makino, A. Inoue, High Bs Fe84−xSi4B8P4Cux(x=0–1.5) nanocrystalline alloys with excellent magnetic softness. J. Appl. Phys. 109(7), 07A303 (2011)

    Article  Google Scholar 

  25. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness. J. Appl. Phys. 105(7), 07A308 (2009)

    Article  Google Scholar 

  26. M. Ohta, Y. Yoshizawa, Magnetic properties of nanocrystalline Fe82.65Cu1.35SixB16−x alloys(x=0–7). Appl. Phys. Lett. 91(6), 062517 (2007)

    Article  Google Scholar 

  27. L. Hou, X. Fan, Q. Wang, W. Yang, B. Shen, Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys. J. Mater. Sci. Technol. 35, 1655–1661 (2019)

    Article  CAS  Google Scholar 

  28. K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Cu clustering and Si partitioning in the early crystallization stage of an Fe735Si135B9Nb3 Cu1 amorphous alloy. Acta mater 47(3), 997–1006 (1999)

    Article  CAS  Google Scholar 

  29. R. Jha, D.R. Diercks, N. Chakraborti, A.P. Stebner, C.V. Ciobanu, Interfacial energy of copper clusters in Fe-Si-B-Nb-Cu alloys. Scripta. Mater. 162, 331–334 (2019)

    Article  CAS  Google Scholar 

  30. S. Flohrer, R. Schäfer, J. McCord, S. Roth, L. Schultz, G. Herzer, Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta. Mater. 54(12), 3253–3259 (2006)

    Article  CAS  Google Scholar 

  31. S. Flohrer, R. Schäfer, J. McCord, S. Roth, L. Schultz, F. Fiorillo, W. Günther, G. Herzer, Dynamic magnetization process of nanocrystalline tape wound cores with transverse field-induced anisotropy. Acta. Mater. 54(18), 4693–4698 (2006)

    Article  CAS  Google Scholar 

  32. S. Flohrer, R. Schäfer, C. Polak, G. Herzer, Interplay of uniform and random anisotropy in nanocrystalline soft magnetic alloys. Acta. Mater. 53(10), 2937–2942 (2005)

    Article  CAS  Google Scholar 

  33. K. Suzuki, G. Herzer, Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta. Mater. 67(6), 548–553 (2012)

    Article  CAS  Google Scholar 

  34. K. Suzuki, R. Parsons, B. Zang, K. Onodera, H. Kishimoto, T. Shoji, A. Kato, Nano-crystallization of amorphous alloys by ultra-rapid annealing: An effective approach to magnetic softening. J. Alloy. Compd. 735, 613–618 (2018)

    Article  CAS  Google Scholar 

  35. M. Ohnuma, G. Herzer, P. Kozikowski, C. Polak, V. Budinsky, S. Koppoju, Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy. Acta. Mater. 60(3), 1278–1286 (2012)

    Article  CAS  Google Scholar 

  36. S. Balci, I. Sefa, N. Altin, Design and analysis of a 35 kVA medium frequency power transformer with the nanocrystalline core material. Int. J. Hydrogen Energy 42(28), 17895–17909 (2017)

    Article  CAS  Google Scholar 

  37. M. Ferch, Application overview of nanocrystalline inductive components in today’s power electronic systems. Mater. Sci. A2–01, 1–4 (2013)

    Google Scholar 

  38. W. Zhou, X. Wang, Human gene therapy: A patent analysis. Gene 803, 145889 (2021)

    Article  CAS  Google Scholar 

  39. H.E. Zhang, K.H. Wong, V. Chang, Patent Analysis in the 5G Network. J. Glob. Inf. Manag. 29(6), 1–28 (2021)

    Google Scholar 

  40. P.G.V. Sampaio, M.O.A. González, R.M. de Vasconcelos, M.A.T. dos Santos, J.C. de Toledo, J.P.P. Pereira, Photovoltaic technologies: Mapping from patent analysis. Renew. Sustain. Energy Rev. 93, 215–224 (2018)

    Article  CAS  Google Scholar 

  41. X. Yang, X. Yu, X. Liu, Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry. Sustainability 10(12), 4800 (2018)

    Article  Google Scholar 

  42. D.H. Milanez, L.I.L. Faria, D.R. Leiva, C.S. Kiminami, W.J. Botta, Assessing technological developments in amorphous/glassy metallic alloys using patent indicators. J. Alloy. Compd. 716, 330–335 (2017)

    Article  CAS  Google Scholar 

  43. K. Liu, C. Chen, Formulation of research and development strategy by analysing patent portfolios of key players the semiconductor industry according to patent strength and technical function. World Patent. Inf. 70, 102125 (2022)

    Article  Google Scholar 

  44. J. Zhou, J. You, K. Qiu, Advances in Fe-based amorphous/nanocrystalline alloys. J. Appl. Phys. 132(4), 040702 (2022)

    Article  CAS  Google Scholar 

  45. Soft Magnetic Materials and Components, Hitachi Metals, Ltd., http://www.hitachi-metals.co.jp/e/products/item/sm/.

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant No. 2022YFB2404101), “Pioneer” R&D Program of Zhejiang Province (2023C01075), the youth innovation promotion association CAS (Grant No. 2021294), and the ningbo natural science foundation (2021J197).

Funding

Key Technologies Research and Development Program, 2022YFB2404101, Yaqiang Dong, Youth Innovation Promotion Association of the Chinese Academy of Sciences, 2021294, Yaqiang Dong, Natural Science Foundation of Ningbo, 2021J197, Aina He

Author information

Authors and Affiliations

Authors

Contributions

GHW and ANH conceived the study and wrote the draft. YQD revised and improved the manuscript. JWL improved the manuscript.

Corresponding authors

Correspondence to Aina He or Yaqiang Dong.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., He, A., Dong, Y. et al. Technological developments in amorphous and nanocrystalline soft magnetic ribbons with high saturation induction via patent analysis. J Mater Sci: Mater Electron 34, 545 (2023). https://doi.org/10.1007/s10854-023-09977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09977-5

Navigation