Skip to main content
Log in

A novel Ni/Y2O3/4H-SiC heteroepitaxial metal–oxide–semiconductor (MOS) betavoltaic cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel vertical heteroepitaxial metal–oxide–semiconductor (MOS) device with extremely high minority carrier diffusion length has been characterized as a betavoltaic cell for power generation in harsh environment applications where solar photovoltaics cannot operate. The MOS structure has been realized by epitaxial growth of 40 nm thick yttrium oxide (Y2O3) layer through pulsed laser deposition on 20 μm thick n-type 4H-SiC epilayers with ultralow defect concentration. A 10 nm thick circular (10 mm2) nickel contact was deposited as the gate contact. The surface passivation effect of the Y2O3 layer and its large bandgap resulted in an extremely low leakage current density of 57 pA/cm2 at a reverse bias of − 250 V which is an order of magnitude less than that observed in benchmark Schottky barrier detectors at the same bias. The thin Y2O3 layer showed minimal absorption of 5486-keV alpha particles when exposed to a 241Am source and demonstrated a charge collection efficiency of 82%, measured in self-biased mode (0 V applied bias). When exposed to a 5 mCi 63Ni beta source, the MOS devices demonstrated an output power density of 11 nW/cm3 and a fill factor > 66% even with a partial illumination. The single pixel MOS devices discussed in this paper have shown a very high prospect to reach the maximum theoretical conversion efficiency of 25% predicted by the Klein relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. S.I. Maximenko, J.E. Moore, C.A. Affouda, P.P. Jenkins, Optimal semiconductors for 3H and 63Ni betavoltaics. Sci. Rep. 9, 10892 (2019). https://doi.org/10.1038/s41598-019-47371-6

    Article  CAS  Google Scholar 

  2. J. Dixon, A. Rajan, S. Bohlemann, D. Coso, A.D. Upadhyaya, A. Rohatagi, S. Chu, A. Majumdar, S. Yee, Evaluation of a silicon 90Sr betavoltaic power source. Sci. Rep. 6, 38182 (2016). https://doi.org/10.1038/srep38182

    Article  CAS  Google Scholar 

  3. M. Li, J. Yang, Y. Shi, Z. Chen, P. Bai, H. Su, P. Xiong, M. Cheng, J. Zhao, Y. Xu, Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 34(5), 2107226 (2021). https://doi.org/10.1002/adma.202107226

    Article  CAS  Google Scholar 

  4. S.K. Chaudhuri, O. Karadavut, J.W. Kleppinger, R. Nag, G. Yang, D. Lee, K.C. Mandal, Enhanced hole transport in Ni/Y2O3/n-4H-SiC MOS for self-biased radiation detection. IEEE Electron Device Lett. 43(9), 1416–1419 (2022). https://doi.org/10.1109/LED.2022.3188543

    Article  CAS  Google Scholar 

  5. J.W. Kleppinger, S.K. Chaudhuri, O. Karadavut, K.C. Mandal, Defect characterization and charge transport measurements in high-resolution Ni/n-4H SiC Schottky barrier radiation detectors fabricated on 250 μm epitaxial layers. J. Appl. Phys. 129, 244501 (2021). https://doi.org/10.1063/5.0049218

    Article  CAS  Google Scholar 

  6. G. Lioliou, A.M. Barnett, Electron-hole pair creation and conversion efficiency in radioisotope microbatteries. Appl. Rad. Isotopes 180, 110042 (2021). https://doi.org/10.1016/j.apradiso.2021.110042

    Article  CAS  Google Scholar 

  7. A. O’Connor, M.V. Manuel, S. Harry, An extended-temperature, volumetric source model for betavoltaic power generation. Trans. Am. Nucl. Soc. 121, 542–545 (2019)

    Google Scholar 

  8. M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019). https://doi.org/10.1063/1.5123163

    Article  CAS  Google Scholar 

  9. G. Lioliou, A.B. Krysa, A.M. Barnett, Wide bandgap semiconductor conversion devices for radioisotope microbatteries. Mater. Sci. Semicond. Proc. 142, 106533 (2022). https://doi.org/10.1016/j.mssp.2022.106533

    Article  CAS  Google Scholar 

  10. T. Shimaoka, H. Umezawa, K. Ichikawa, J. Pernot, S. Koizumi, Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction. Appl. Phys. Lett. 117, 103902 (2020). https://doi.org/10.1063/5.0020135

    Article  CAS  Google Scholar 

  11. J.W. Murphy, L.F. Voss, C.D. Frye, Q. Shao, K. Kazkaz, M.A. Stoyer, R.A. Henderson, R.J. Nikolic, Design considerations for three-dimensional betavoltaics. AIP Adv. 9, 065208 (2019). https://doi.org/10.1063/1.5097775

    Article  CAS  Google Scholar 

  12. K.C. Mandal, J.W. Kleppinger, S.K. Chaudhuri, Advances in high-resolution radiation detection using 4H-SiC epitaxial layer devices. Micromachines 11(3), 254 (2020). https://doi.org/10.3390/mi11030254

    Article  Google Scholar 

  13. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968). https://doi.org/10.1063/1.1656484

    Article  CAS  Google Scholar 

  14. S.K. Chaudhuri, K.C. Mandal, Radiation detection using n-type 4H-SiC epitaxial layer surface barrier detectors, in Advanced Materials for Radiation Detection. ed. by K. Iniewski (Springer, Berlin, 2021), pp.183–209

    Google Scholar 

  15. S.O. Kasap, M.Z. Kabir, K.O. Ramaswami, R.E. Johanson, R.J. Curry, Charge collection efficiency in the presence of non-uniform carrier drift mobilities and lifetimes in photoconductive detectors. J. Appl. Phys. 128, 124501 (2020). https://doi.org/10.1063/5.0017521

    Article  CAS  Google Scholar 

  16. K. Ramaswami, R. Johanson, S. Kasap, Charge collection efficiency in photoconductive detectors under small to large signals. J. Appl. Phys. 125, 244503 (2019). https://doi.org/10.1063/1.5096900

    Article  CAS  Google Scholar 

  17. H.J. Quah, W.F. Lim, S.C. Wimbush, Z. Lockman, K.Y. Cheong, Electrical properties of pulsed laser deposited Y2O3 gate oxide on 4H-SiC. Electrochem. Solid-State Lett. 13(11), H396–H398 (2010). https://doi.org/10.1149/1.3481926

    Article  CAS  Google Scholar 

  18. H. Matsunami, T. Kimoto, Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Mater. Sci. Eng. R Rep. 20(3), 125–166 (1997). https://doi.org/10.1016/S0927-796X(97)00005-3

    Article  Google Scholar 

  19. J.J. Sumakeris, J.R. Jenny, A.R. Powell, Bulk crystal growth, epitaxy, and defect reduction in silicon carbide materials for microwave and power devices. MRS Bull. 30(4), 280–286 (2011). https://doi.org/10.1557/mrs2005.74

    Article  Google Scholar 

  20. N. Piluso, A. Severino, R. Anzalone, M.A. Di Stefano, E. Fontana, M. Salanitri, S. Lorenti, A. Campione, P. Fiorenza, F. La Via, Growth of 4H-SiC epitaxial layer through optimization of buffer layer. Mater. Sci. Forum. 924, 84–87 (2018). https://doi.org/10.4028/www.scientific.net/MSF.924.84

    Article  Google Scholar 

  21. W. Kern, The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137(6), 1887–1892 (1990). https://doi.org/10.1149/1.2086825

    Article  CAS  Google Scholar 

  22. I.C. Robin, R. Kumaran, S. Penson, S.E. Webster, T. Tiedje, A. Oleinik, Structure and photoluminescence of Nd:Y2O3 grown by molecular beam epitaxy. Opt. Mater. 30(6), 835–838 (2008). https://doi.org/10.1016/j.optmat.2007.03.003

    Article  CAS  Google Scholar 

  23. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey, 2007)

    Google Scholar 

  24. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014). https://doi.org/10.1063/1.4858400

    Article  CAS  Google Scholar 

  25. A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall, D.J. Friedman, E.J. Tervo, R.M. France, M.R. Young, A. Rohskopf, S. Verma, E.N. Wang, A. Henry, Thermophotovoltaic efficiency of 40%. Nature 604, 287–291 (2022). https://doi.org/10.1038/s41586-022-04473-y

    Article  CAS  Google Scholar 

  26. M.B.H. Breese, A theory of ion beam induced charge collection. J. Appl. Phys. 74(6), 3789–3799 (1993). https://doi.org/10.1063/1.354471

    Article  CAS  Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrum. Meth. Phys. Res. B 268(11–12), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  28. C. Zhao, F. Liao, K. Liu, Y. Zhao, Breaking the myth: wide-bandgap semiconductors not always the best for betavoltaic batteries. Appl. Phys. Lett. 119, 153904 (2021). https://doi.org/10.1063/5.0068269

    Article  CAS  Google Scholar 

  29. C. Zhao, L. Lei, F. Liao, D. Yuan, Y. Zhao, Efficiency prediction of planar betavoltaic batteries basing on precise modeling of semiconductor units. Appl. Phys. Lett. 117, 263901 (2020). https://doi.org/10.1063/5.0033052

    Article  CAS  Google Scholar 

  30. V.S. Bormashov, S.Y. Troschiev, S.A. Tarelkin, A.P. Volkov, D.V. Teteruk, A.V. Golovano, M.S. Kuznetsov, N.V. Kornilov, S.A. Terentiev, V.D. Blank, High power density nuclear battery prototype based on diamond Schottky diodes. Diamond Relat. Mater. 84, 41–47 (2018). https://doi.org/10.1016/j.diamond.2018.03.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial financial support provided by the DOE Office of Nuclear Energy’s Nuclear Energy University Program (NEUP), Grant No. DE-NE0008662. The work was also supported in part by the Advanced Support Program for Innovative Research Excellence-II (ASPIRE-II), #155300-21-57381 and ASPIRE-I, Grant No. 15530-E404.

Funding

The authors acknowledge the partial financial support provided by the DOE Office of Nuclear Energy’s Nuclear Energy University Program (NEUP), Grant No. DE-NE0008662. The work was also supported in part by the Advanced Support Program for Innovative Research Excellence-II (ASPIRE-II), #155300-21-57381 and ASPIRE-I, Grant No. 15530-E404.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [SKC], [RN], and [KCM]. The first draft of the manuscript was written by [SKC] and [KCM] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krishna C. Mandal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, S.K., Nag, R. & Mandal, K.C. A novel Ni/Y2O3/4H-SiC heteroepitaxial metal–oxide–semiconductor (MOS) betavoltaic cell. J Mater Sci: Mater Electron 34, 543 (2023). https://doi.org/10.1007/s10854-023-09971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09971-x

Navigation