Skip to main content
Log in

Effect of incorporation of alkali earth metal oxide on structural, optical and DC conduction mechanism in tellurium-phosphate glassy systems

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of alkali earth metal oxide on the structural, optical and electrical properties of inorganic glasses having chemical composition xCaO–(0.35-x) BaO–0.40TeO2–0.25P2O5 (x = 0.0, 0.05, 0.1, 0.15, 0.20, 0.25, and 0.35) were studied and prepared by melt-quenching method. With an increase in CaO concentration (x), it was found that physical characteristics like density (4.5 to 3.9 g cm–3) and oxygen packing density (57.2 to 59.8 mol-litre–1) decreased and increased, respectively. The Rietveld refinement process was used to analyse the x = 0.0 and x = 0.25 samples, revealing peaks were primarily due to the hexagonal Ba2P2O7 and tetragonal TeO2 phases, respectively. The Te–O bond of the TeO4 tetrahedral unit, Te–O–Te linkage, and PO32– groups inside the glass matrix were among the several bond configurations that were identified using Raman spectroscopy. The value of the optical bandgap energy reduced with the inclusion of CaO up to sample x = 0.15, after which it was found to increase and Urbach energy, on the other hand, followed the opposite trend. The absorbance and reflectance spectra were studied and different optical parameters like absorption coefficient, extinction coefficient, reflectivity, refraction index, polarizability, etc., were studied and discussed. The determined values of third-order optical susceptibility and non-linear refractive index suggested potential optoelectronic applications because it was observed that they increased up to x = 0.15 sample before reducing once more. The DC conductivity value ranged from 5.85 to − 3.85 Ω–1 cm–1 in the log scale, and it was noticed that DC conductivity increased up to x = 0.15 before decrementing once more. The process of DC conductivity was described by Mott and Greaves’s variable range hopping model, and it was observed that DC conductivity increased as hopping distance and hopping energy values decreased. The highest conductivity was found in the sample with x = 0.15, while ternary composites exhibited conductivities that were lower than those of all other quaternary samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data from glass samples have been taken using different experimental instruments and graphs are plotted using Origin 2017.

References

  1. A.H. Hassanien, I. Sharma, P. Sharma, Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35–xSnx films and some physical properties of their glasses. Mater. Chem. Phys. 293, 126887 (2023). https://doi.org/10.1016/j.matchemphys.2022.126887

    Article  CAS  Google Scholar 

  2. R. Mondal, S. Mondal, P. Tudu, P. Chatterjee, S. Kabi, A.S. Das, S. Chattopadhyay, D. Biswas, Tunable band gap, CB and VB positions of multicomponent Se65–xTe20Ge15Snx chalcogenide glassy systems: effect of metallic additives on physical and optical parameters. Mater. Chem. Phys. 296, 127187 (2023). https://doi.org/10.1016/j.matchemphys.2022.127187

    Article  CAS  Google Scholar 

  3. I. Sharma, P. Sharma, A.S. Hassanien, Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35–xTe50 films. J. Non-Cryst. Solids 590, 121673 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121673

    Article  CAS  Google Scholar 

  4. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt Quant Electron 52, 335 (2020). https://doi.org/10.1007/s11082-020-02448-9

    Article  CAS  Google Scholar 

  5. A.S. Hassanien, I. Sharma, Dielectric properties, Optoelectrical parameters and electronic polarizability of thermally evaporated a-Pb-Se-Ge thin films. Phys. B : Condens. Matter. 622, 413330 (2021). https://doi.org/10.1016/j.physb.2021.413330

    Article  CAS  Google Scholar 

  6. A.S. Hassanien, Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu–Ge–Se–Te films. J. Non-Cryst. Solids 586, 121563 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121563

    Article  CAS  Google Scholar 

  7. M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough, Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy Environ. Sci. 9, 948–954 (2016). https://doi.org/10.1039/C5EE02924D

    Article  CAS  Google Scholar 

  8. F. Xiong, Q. An, L. Xia, Y. Zhao, L. Mai, H. Tao, Y.Z. Yue, Revealing the atomistic origin of the disorder-enhanced Na-storage performance in NaFePO4 battery cathode. Nano Energy 57, 608–615 (2019). https://doi.org/10.1016/j.nanoen.2018.12.087

    Article  CAS  Google Scholar 

  9. D. Souri, Small polaron hopping conduction in tellurium-based glasses containing vanadium and antimony. J. Non-Cryst. Solids 356, 2181–2184 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.08.020

    Article  CAS  Google Scholar 

  10. S. Terny, M. Frechero, Understanding how the mixed alkaline-earth effect tunes transition metal oxides-tellurite glasses properties. Phys. B Condensed Matter 583, 412054 (2020). https://doi.org/10.1016/j.physb.2020.412054

    Article  CAS  Google Scholar 

  11. D. Biswas, A.S. Das, R. Mondal, A. Banerjee, D. Deb, A. Dutta, S. Bhattacharya, S. Kabi, L.S. Singh, Study of microstructure and electrical conduction mechanisms of quaternary semiconducting glassy systems: effect of mixed modifiers. J. Non-Cryst. Solids 542, 120104 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120104

    Article  CAS  Google Scholar 

  12. A. Lapa, M. Cresswell, P. Jackson, A.R. Boccaccini, Phosphate glass fibres with therapeutic ions release capability–a review. Adv. Appl. Ceram. 119(1), 1–14 (2020). https://doi.org/10.1080/17436753.2018.1564413

    Article  CAS  Google Scholar 

  13. K. Vosejpkova, L. Koudelka, Z. Cernosek, P. Mosner, L. Montagne, B. Revel, Structural studies of boron and tellurium coordination in zinc boron phosphate glasses by 11B MAS NMR and Raman spectroscopy. J. Phys. Chem. Solids 73, 324–329 (2012). https://doi.org/10.1016/j.jpcs.2011.10.015

    Article  CAS  Google Scholar 

  14. Y. Chen, S. Zhang, E. Li, M. Zou, S. Duan, Investigation of low-temperature sintering mechanism on BaO-Nd2O3-TiO2 dielectric ceramics with Li2O-B2O3-SiO2 and BaO-ZnO-B2O3 Glasses. Phys Status Solidi A (2018). https://doi.org/10.1002/pssa.201700938

    Article  Google Scholar 

  15. S. Ghosh, A.D. Sharma, P. Kundu, S. Mahanty, R.N. Basu, Development and characterizations of BaO–CaO–Al2O3–SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cell application. J. Non-Cryst. Solids 354, 4081 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.036

    Article  CAS  Google Scholar 

  16. I. Kashif, S.A. Rahman, A.A. Soliman, E.M. Ibrahim, E.K. Abdel-Khalek, A.G. Mostafa, A.M. Sanad, Effect of alkali content on AC conductivity of borate glasses containing two transition metals. Physica B 404, 3842–3849 (2009). https://doi.org/10.1016/j.physb.2009.07.102

    Article  CAS  Google Scholar 

  17. B. Qian, X. Liang, C. Wang, S. Yang, Structure and properties of calcium iron phosphate glasses. J. Nucl. Mate. 443, 140–144 (2013). https://doi.org/10.1016/j.jnucmat.2013.07.014

    Article  CAS  Google Scholar 

  18. P.A. Bingham, R.J. Hand, O.M. Hannant, S.D. Forder, S.H. Kilcoyne, Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses. J. Non-Cryst Solids 355, 1526–1538 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.03.008

    Article  CAS  Google Scholar 

  19. M. Lu, F. Wang, K. Chen, Y. Dai, Q. Liao, H. Zhu, The crystallization and structure features of barium-iron phosphate glasses. Spectrochim Acta A 148, 1–6 (2015). https://doi.org/10.1016/j.saa.2015.03.121

    Article  CAS  Google Scholar 

  20. Z. Mazurak, M. Czaja, R. Lisiecki, J. Gabrys- Pisarska, Optical properties of the Tm3+ and energy transfer between Tm3+→Pr3+ ions in P2O5-CaO-SrO-BaO phosphate glass. Opt Mater. 33, 506–510 (2011). https://doi.org/10.1016/j.optmat.2010.10.031

    Article  CAS  Google Scholar 

  21. S.V.G.V.A. Prasad, M. Srinivasa Reddy, V. Ravi Kumar, N. Veeraiah, Specific features of photo and thermoluminescence of Tb3+ ions in BaO–M2O3 (M=Ga, Al, In)–P2O5 glasses. J. Lumin. 127, 637–644 (2007). https://doi.org/10.1016/j.jlumin.2007.03.011

    Article  CAS  Google Scholar 

  22. A.B. Edathazhe, H.D. Shashikala, Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses. AIP Conf. Proc. 1943, 020072 (2018). https://doi.org/10.1063/1.5029648

    Article  CAS  Google Scholar 

  23. S.R. Elliott, Physics of Amorphous Materials, John Wiley and Sons, 1986.

  24. D.P. Singh, G.P. Singh, Conversion of covalent to ionic behavior of Fe2O3–CeO2–PbO–B2O3 glasses for ionic and photonic application. J. Alloys Comp. 546, 224–228 (2013). https://doi.org/10.1016/j.jallcom.2012.08.105

    Article  CAS  Google Scholar 

  25. R.K.N. Ningthemcha, D. Biswas, Y.B. Singh, D. Sarkar, R. Mondal, D. Mandal, L.S. Singh, Temperature and frequency dependent electrical conductivity and dielectric relaxation of mixed transition metal doped bismuth-phosphate semiconducting glassy systems. Mater. Chem. Phys. 249, 123207 (2020). https://doi.org/10.1016/j.matchemphys.2020.123207

    Article  CAS  Google Scholar 

  26. N. Kaur, A. Khanna, Structural characterization of borotellurite and alumino-borotellurite glasses. J. Non-Cryst. Solids 404, 116–123 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.002

    Article  CAS  Google Scholar 

  27. J.E. Pemberton, L. Latifzadeh, Raman spectroscopy of calcium phosphate glasses with varying calcium oxide modifier concentrations. Chem. Mater. 3, 195–200 (1991). https://doi.org/10.1021/cm00013a039

    Article  CAS  Google Scholar 

  28. N. Vedeanu, O. Cozar, I. Ardelean, S. Filip, Spectroscopic investigation on some calcium-phosphate glasses. J. Optoelectron. Adv. Mater. 8, 1135–1139 (2006)

    CAS  Google Scholar 

  29. T. Schmida, P. Darizb, Shedding light onto the spectra of lime: raman and luminescence bands of CaO, Ca(OH)2 and CaCO3. J. Raman Spectrosc. 46, 141–146 (2014). https://doi.org/10.1002/jrs.4622

    Article  CAS  Google Scholar 

  30. R.K.N. Ningthemcha, R. Mondal, A.S. Das, S. Debnath, S. Kabi, L.S. Singh, D. Biswas, The effect of transition metal and heavy metal incorporation on the structural, optical and electrical properties of zinc-phosphate ternary glassy system: a comparative study. Mater. Chem. Phys. 278, 125672 (2022). https://doi.org/10.1016/j.matchemphys.2021.125672

    Article  CAS  Google Scholar 

  31. A.S. Hassanien, K.A. Aly, H.I. Elsaeedy, A. Alqahtani, Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Appl. Phys A 128, 1021 (2022). https://doi.org/10.1007/s00339-022-06127-2

    Article  CAS  Google Scholar 

  32. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  33. A.M. Noorazlan, H.M. Kamari, S.S. Zulkefly, D.W. Mohamad, Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. J. Nanomater. 2013, 1–8 (2013). https://doi.org/10.1155/2013/940917

    Article  CAS  Google Scholar 

  34. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  35. S.S. Hajer, M.K. Halimah, Z. Azmi, M.N. Azlan, Optical properties of zinc-borotellurite doped samarium. Chalcogenide Lett. 11, 553–566 (2014)

    Google Scholar 

  36. G.S. Rao et al., Structural analysis of novel oxyfluoroborate glasses: correlation between elastic and compositional parameters. Mater. Lett. 68, 21–23 (2012). https://doi.org/10.1016/j.matlet.2011.10.009

    Article  CAS  Google Scholar 

  37. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorytion of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  38. R.E. Mallawany, M.D. Abdalla, I.A. Ahmed, New tellurite glass: optical properties. Mater. Chem. Phys. 109(2–3), 291–296 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.040

    Article  CAS  Google Scholar 

  39. R. Mondal, D. Biswas, A.S. Das, R.K.N. Ningthemcha, D. Deb, S. Bhattacharya, S. Kabi, Influence of samarium content on structural, thermal, linear and non-linear optical properties of ZnO–TeO2–P2O5 glasses. Mater. Chem. Phys. 255, 123561 (2020). https://doi.org/10.1016/j.matchemphys.2020.123561

    Article  CAS  Google Scholar 

  40. S. Hussain, R.J. Ahmed, M. Tanveer, M. Nadeem, H. Mahmood, A. Sattar, A. Iqbal, I. Hussain, Z. Amjad, S.Z. Hussain, S.A. Siddique, M.R. Dousti, Optical investigation of Sm 3+ doped in phosphate glass. Glass Phys. Chem. 43, 538–547 (2017). https://doi.org/10.1134/S1087659617060219

    Article  CAS  Google Scholar 

  41. N. Al-Harbi, M.I. Sayyed, Y. Al-Hadeethi, A. Kumar, M. Elsafi, K.A. Mahmoud, M.U. Khandaker, D.A. Bradley, A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiat. Phys. Chem. 188, 109645 (2021). https://doi.org/10.1016/j.radphyschem.2021.109645

    Article  CAS  Google Scholar 

  42. M. Charbonnier, M. Romand, Tin-free electroless metallization of glass substrates using different PACVD surface treatment processes. Surf. Coat. Technol. 162, 19–30 (2002). https://doi.org/10.1016/S0257-8972(02)00382-1

    Article  Google Scholar 

  43. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors, physics and chemistry glasses. Phys. Chem. Glass 13, 171–179 (1972)

    CAS  Google Scholar 

  44. E.A.A. Wahab, K.S. Shaaban, E.S. Yousef, Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt. Quant. Electron. 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3

    Article  CAS  Google Scholar 

  45. A.S. Hassanien, R. Neffati, K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1-xSe films: discussions on bandgap engineering, conduction and valence band positions. Optik 212, 164681 (2020). https://doi.org/10.1016/j.ijleo.2020.164681

    Article  CAS  Google Scholar 

  46. T.A. Taha, Y.S. Rammah, Optical characterization of new borate glass doped with titanium oxide. J. Mater. Sci.: Mater. Electron. 27, 1384–1390 (2016). https://doi.org/10.1007/s10854-015-3901-7

    Article  CAS  Google Scholar 

  47. M. Behera, R. Naik, C. Sripan, R. Ganesan, N.C. Mishra, Influence of Bi content on linear and nonlinear optical properties of As40Se60–xBix chalcogenide thin films. Curr. Appl. Phys. 19, 884–893 (2019). https://doi.org/10.1016/j.cap.2019.05.007

    Article  Google Scholar 

  48. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gapand its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4(2), 381–386 (2002)

    CAS  Google Scholar 

  49. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  50. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  51. N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. A 19, 835–852 (1969). https://doi.org/10.1080/14786436908216338

    Article  CAS  Google Scholar 

  52. G.N. Greaves, Small polaron conduction in V2O5–P2O5 glasses. J. Non-Cryst. Solids 11, 427 (1973). https://doi.org/10.1016/0022-3093(73)90089-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are highly indebted to Jadavpur University, Kolkata for supporting this technical work

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a significant contribution to the research reported and have read and approved the submitted manuscript, and all those who made substantive contributions to this work have been included in the author list. [DB, SK: Conceptualization, AM, DP, DBs, CC, ASD, RM: Formal analysis and investigation, DB, RM: Writing-original draft preparation, DB, NM: Supervision.

Corresponding author

Correspondence to Dipankar Biswas.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There is no Conflict of Interest or Competing Interests for the work.

Ethical Approval

The submitted work is original and the manuscript has not been published, was not, and is not being submitted to any other journal. The submitted manuscript is in full compliance with ethical standards.

Informed consent

This research did not involve any human subjects. The authors provide consent for their research work.

Consent to participate

All the authors have made a substantial contribution towards the final draft of the manuscript.

Consent for publication

The Authors hereby agree to publish this manuscript in the Journal of Materials Science: Materials in Electronics. The manuscript has not been submitted or published in any other Journal.

Research involving human participants and/or animals

This work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Modak, N., Patra, D. et al. Effect of incorporation of alkali earth metal oxide on structural, optical and DC conduction mechanism in tellurium-phosphate glassy systems. J Mater Sci: Mater Electron 34, 528 (2023). https://doi.org/10.1007/s10854-023-09958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09958-8

Navigation