Skip to main content

Advertisement

Log in

ZnO embedded in nitrogen-doped carbon hybrid derived from zeolitic-imidazolate frameworks via mechanochemistry technique as anode material for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon layer coated ZnO hybrid materials were prepared and used as anode in sodium rechargeable batteries from the ZIF-8 (zeolitic-imidazolate framework 8) using mechanochemistry technique. The prepared electrode exhibits an excellent specific capacity of 320 mAh g−1 at 0.1 A g−1 after 100 cycles, and superior long stability for 1000 cycles at 5.0 A g−1. The extraordinary sodium ions storage properties can be attributed to the synergistic interaction between nanoparticle ZnO and carbon layer. The incorporation of carbon layer improves the conductivity of ZnO and alleviates the aggregation and volume expansion, resulting in high performance for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong, B. He, R. Wang, H.J. Fan, Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 25, 114–123 (2020)

    Article  Google Scholar 

  2. X. Zhao, M. Luo, W. Zhao, R. Xu, Y. Liu, H. Shen, SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl. Interface Sci. 10(44), 38006–38014 (2018)

    Article  CAS  Google Scholar 

  3. Y. Xu, X. Sun, Z. Li, L. Wei, G. Yao, H. Niu, Y. Yang, F. Zheng, Q. Chen, Boosting the K+-adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. Nanoscale 13, 19634–19641 (2021)

    Article  CAS  Google Scholar 

  4. Z. Li, Y. Yang, G. Ding, L. Wei, G. Yao, H. Niu, F. Zheng, Q. Chen, Optimizing the nitrogen configuration in interlayer-expanded carbon materials via sulfur-bridged bonds toward remarkable energy storage performances. J. Mater. Chem. A 10, 10033–10042 (2022)

    Article  CAS  Google Scholar 

  5. X. Wang, Z. Ma, L. Chai, L. Xu, Z. Zhu, Y. Hu, J. Qian, S. Huang, MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon 141, 643–651 (2019)

    Article  CAS  Google Scholar 

  6. L. Tan, D. Guo, D. Chu, J. Yu, L. Zhang, J. Yu, J. Wang, Metal organic frameworks template-directed fabrication of hollow nickel cobalt selenides with pentagonal structure for high-performance supercapacitors. J. Electroanaly Chem. 851, 113469 (2019)

    Article  CAS  Google Scholar 

  7. H. Wang, S.K. Biswas, S. Zhu, Y. Lu, Y. Yue, J. Han, X. Xu, Q. Wu, H. Xiao, Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors. Nanomaterials 10(1), 112 (2020)

    Article  CAS  Google Scholar 

  8. F. Zheng, K. Chu, Y. Yang, Z. Li, L. Wei, Y. Xu, G. Yao, Q. Chen, Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. ACS Appl. Mater. Interface 14, 9212–9221 (2022)

    Article  CAS  Google Scholar 

  9. P. Niu, Y. Yang, Z. Li, G. Ding, L. Wei, G. Yao, H. Niu, Y. Min, F. Zheng, Q. Chen, Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 15, 8109–8117 (2022)

    Article  CAS  Google Scholar 

  10. S. Xu, Z. Li, K. Chu, G. Yao, Y. Xu, P. Niu, Y. Yang, Q. Chen, F. Zheng, Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances. ACS Appl. Energy Mater. 4, 662–670 (2021)

    Article  CAS  Google Scholar 

  11. Y. Xiang, L. Xin, J. Hu, C. Li, J. Qi, Y. Hou, X. Wei, Advances in the applications of graphene-based nanocomposites in clean energy materials. Crystals 11(1), 47 (2021)

    Article  CAS  Google Scholar 

  12. J. Li, D. Yan, S. Hou, T. Lu, Y. Yao, D.H.C. Chua, L. Pan, Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 335, 579–589 (2018)

    Article  CAS  Google Scholar 

  13. Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang, Y. Wang, K. Zaghib, K. Jiang, High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 30(10), 1908754 (2020)

    Article  CAS  Google Scholar 

  14. W. Li, F. Zhang, X. Xiang, X. Zhang, Nickel-substituted copper hexacyanoferrate as a superior cathode for aqueous sodium-ion batteries. ChemElectroChem 5(2), 350–354 (2018)

    Article  CAS  Google Scholar 

  15. X. Zhang, X. Gao, D. Li, C. Duanmu, J. Jiang, J. Chen, X. Yu, P. Dong, Flower-like NiO/ZnO hybrid coated with N-doped carbon layer derived from metal-organic hybrid frameworks as novel anode material for high performance sodium-ion batteries. J. Colloid Interface Sci. 563, 354–362 (2020)

    Article  CAS  Google Scholar 

  16. Z. Wu, X. Zhang, L. Deng, Y. Zhang, Z. Wang, Y. Shen, G. Shao, Atomic layer coated Al2O3 on nitrogen doped vertical graphene nanosheets for high performance sodium ion batteries. Energy Environ. Mater. 5, 285–294 (2022)

    Article  CAS  Google Scholar 

  17. S. Sun, Q. Yan, M. Wu, X. Zhao, Carbon aerogel based materials for secondary batteries. Energy Environ. Mater. 4, 229–238 (2021)

    Google Scholar 

  18. D. Cheng, L. Yang, R. Hu, J. Liu, M. Zhu, Microsized SnS/Few-layer graphene composite with interconnected nanosized building blocks for superior volumetric lithium and sodium storage. Sustain. Mater. Technol. 30, e00342 (2021)

    Google Scholar 

  19. P. Jing, Q. Wang, B. Wang, X. Gao, Y. Zhang, H. Wu, Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 159, 366–377 (2020)

    Article  CAS  Google Scholar 

  20. K.C. Wasalathilake, H. Li, L. Xu, C. Yan, Recent advances in graphene based materials as anode materials in sodium-ion batteries. J. Energy Chem. 42, 91–107 (2020)

    Article  Google Scholar 

  21. C. Shan, X. Feng, J. Yang, X. Yang, H.-Y. Guan, M. Argueta, X.-L. Wu, D.-S. Liu, D.J. Austin, P. Nie, Y. Yue, Hierarchical porous carbon pellicles: Electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon 157, 308–315 (2020)

    Article  CAS  Google Scholar 

  22. J. Song, H. Kim, W. Jae, T. Kim, C.M. Futalan, J. Kim, Porous ZnO/C microspheres prepared with maleopimaric acid as an anode material for lithium-ion batteries. Carbon 165, 55–66 (2020)

    Article  CAS  Google Scholar 

  23. G. Han, X. Wang, J. Yao, M. Zhang, J. Wang, The application of indium oxide@CPM-5-C-600 composite material derived from MOF in cathode material of lithium sulfur batteries. Nanomaterials 10(1), 177 (2020)

    Article  CAS  Google Scholar 

  24. S. Sinha, P.N. Didwal, D.K. Nandi, J.Y. Cho, S.-H. Kim, C.-J. Park, J. Heo, Atomic layer deposited-ZnO@3D-Ni-foam composite for Na-ion battery anode: a novel route for easy and efficient electrode preparation. Ceram. Int. 45(1), 1084–1092 (2019)

    Article  CAS  Google Scholar 

  25. J. Park, J.-B. Ju, W. Choi, S.-O. Kim, Highly reversible ZnO@ZIF–8-derived nitrogen-doped carbon in the presence of fluoroethylene carbonate for high-performance lithium-ion battery anode. J. Alloy Compd. 773, 960–969 (2019)

    Article  CAS  Google Scholar 

  26. W. Gu, J. Lv, B. Quan, X. Liang, B. Zhang, G. Ji, Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. J. Alloy Compd. 806, 983–991 (2019)

    Article  CAS  Google Scholar 

  27. H. Cao, X. Zhou, W. Deng, Z. Ma, Y. Liu, Z. Liu, Layer structured graphene/porous ZnCo2O4 composite film for high performance flexible lithium-ion batteries. Chem. Eng. J. 343, 654–661 (2018)

    Article  CAS  Google Scholar 

  28. Z. Zhang, Y. Huang, X. Liu, C. Chen, Z. Xu, P. Liu, Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157, 244–254 (2020)

    Article  CAS  Google Scholar 

  29. X. Zhang, X. Gao, K. Hong, J. Jiang, L. Zhang, J. Chen, Z. Rao, Hierarchically porous carbon materials derived from MIL-88(fe) for superior high-rate and long cycling-life sodium ions batteries. J. Electroanal. Chem. 852, 113525 (2019)

    Article  CAS  Google Scholar 

  30. X. Gao, G. Zhu, X. Zhang, T. Hu, Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries. Micropor. Mesopor. Mater. 273, 156–162 (2019)

    Article  CAS  Google Scholar 

  31. J. Li, X. Zhang, L. Han, D. Yan, S. Hou, T. Lu, Y. Yao, L. Pan, TiO2 nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. J. Mater. Chem. A 6(47), 24224–24231 (2018)

    Article  CAS  Google Scholar 

  32. X. Gao, X. Zhang, J. Jiang, J. Chen, Rod-like carbon-coated MnS derived from metal-organic frameworks as high-performance anode material for sodium-ion batteries. Mater. Lett. 228, 42–45 (2018)

    Article  CAS  Google Scholar 

  33. J. Zhao, W. Shan, P. Zhang, S. Dai, Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property. Chem. Eng. J. 381, 122579 (2020)

    Article  CAS  Google Scholar 

  34. T. Friščić, C. Mottillo, H.M. Titi, Mechanochemistry for synthesis. Angew Chem. Int. Ed. 59(3), 1018–1029 (2020)

    Article  Google Scholar 

  35. B. Karadeniz, D. Žilić, I. Huskić, L.S. Germann, A.M. Fidelli, S. Muratović, I. Lončarić, M. Etter, R.E. Dinnebier, D. Barišić, N. Cindro, T. Islamoglu, O.K. Farha, T. Friščić, K. Užarević, Controlling the polymorphism and topology transformation in porphyrinic zirconium metal–organic frameworks via mechanochemistry. J. Am. Chem. Soc. 141(49), 19214–19220 (2019)

    Article  CAS  Google Scholar 

  36. E. Santoso, R. Ediati, Z. Istiqomah, D.O. Sulistiono, R.E. Nugraha, Y. Kusumawati, H. Bahruji, D. Prasetyoko, Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue. Micropor. Mesopor. Mater. 310, 110620 (2021)

    Article  CAS  Google Scholar 

  37. J. Wang, L. Gao, J. Zhao, J. Zheng, J. Wang, J. Huang, A facile in–situ synthesis of ZIF–8 nanoparticles anchored on reduced graphene oxide as a sulfur host for Li–S batteries. Mater. Res. Bull. 133, 111061 (2021)

    Article  CAS  Google Scholar 

  38. Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun, L. Pan, Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. 51(60), 12020–12023 (2015)

    Article  CAS  Google Scholar 

  39. J. Tang, M. Yang, W. Dong, M. Yang, H. Zhang, S. Fan, J. Wang, L. Tan, G. Wang, Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv. 6(46), 40106–40114 (2016)

    Article  CAS  Google Scholar 

  40. J. Li, D. Yan, X. Zhang, S. Hou, T. Lu, Y. Yao, L. Pan, ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 5(38), 20428–20438 (2017)

    Article  CAS  Google Scholar 

  41. Y. Dou, J. Zhou, F. Yang, M.-J. Zhao, Z. Nie, J.-R. Li, Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. J. Mater. Chem. A 4(32), 12526–12534 (2016)

    Article  CAS  Google Scholar 

  42. R. Li, W. Li, C. Jin, Q. He, Y. Wang, Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation. J. Alloys Compd. 825, 154008 (2020)

    Article  CAS  Google Scholar 

  43. J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 325, 14–24 (2017)

    Article  CAS  Google Scholar 

  44. W. Wang, W. Qiu, Y. Zhang, X. Wang, Facile synthesis of free-standing nanorod structured ZnO@carbon nanofiber film and its application in lithium-ion battery anode. Solid State Sci. 109, 106430 (2020)

    Article  CAS  Google Scholar 

  45. Y. Huo, Y. Teng, K. Cai, H. Chen, Honeycomb ZnO/N/C obtained from cornsilk and ZIF-8 dual induced method for long-life aqueous zinc-ion batteries. J. Alloy Compd. 855, 157398 (2021)

    Article  CAS  Google Scholar 

  46. T. Chen, X. Liu, L. Niu, Y. Gong, C. Li, S. Xu, L. Pan, Recent progress on metal–organic framework-derived materials for sodium-ion battery anodes. Inorg. Chem. Front. 7(3), 567–582 (2020)

    Article  CAS  Google Scholar 

  47. Y. Li, B. Ni, X. Li, X. Wang, D. Zhang, Q. Zhao, J. Li, T. Lu, W. Mai, L. Pan, High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers. Nano Micro Lett. 11(1), 60 (2019)

    Article  CAS  Google Scholar 

  48. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  CAS  Google Scholar 

  49. Y. Han, P. Qi, S. Li, X. Feng, J. Zhou, H. Li, S. Su, X. Li, B. Wang, A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50(59), 8057–8060 (2014)

    Article  CAS  Google Scholar 

  50. R. Jin, X. Li, Y. Sun, H. Shan, L. Fan, D. Li, X. Sun, Metal–organic frameworks-derived Co2P@N-C@rGO with dual protection layers for improved sodium storage. ACS Appl. Interface Sci. 10(17), 14641–14648 (2018)

    Article  CAS  Google Scholar 

  51. H. Shan, Y. Zhao, X. Li, D. Xiong, L. Dong, B. Yan, D. Li, X. Sun, Carbon nanotubes cross-linked Zn2SnO4 nanoparticles/graphene networks as high capacities, long life anode materials for lithium ion batteries. J. Appl. Electrochem. 46(8), 851–860 (2016)

    Article  CAS  Google Scholar 

  52. M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem. Eng. J. 308, 240–247 (2017)

    Article  CAS  Google Scholar 

  53. X. Zhang, W. Ou-Yang, G. Zhu, T. Lu, L. Pan, Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon 143, 116–124 (2019)

    Article  CAS  Google Scholar 

  54. D. Yan, C. Yu, Y. Bai, W. Zhang, T. Chen, B. Hu, Z. Sun, L. Pan, Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 51(39), 8261–8264 (2015)

    Article  CAS  Google Scholar 

  55. C.B. Liao, Q.K. Xu, C. Wu, D.L. Fang, S.Y. Chen, S.M. Chen, J.S. Luo, L. Li, Core-shell nano-structured carbon composites based on tannic acid for lithium-ion batteries. J. Mater. Chem. A 4(43), 17215–17224 (2016)

    Article  CAS  Google Scholar 

  56. J. Wang, L. Shen, H. Li, X. Wang, P. Nie, B. Ding, G. Xu, H. Dou, X. Zhang, A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochim. Acta 133, 209–216 (2014)

    Article  CAS  Google Scholar 

  57. Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H.Q. Wu, A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 9(5), 1228–1232 (2007)

    Article  CAS  Google Scholar 

  58. J. Qu, Y.-X. Yin, Y.-Q. Wang, Y. Yan, Y.-G. Guo, W.-G. Song, Layer structured α-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Appl. Interfaces Sci. 5(9), 3932–3936 (2013)

    Article  CAS  Google Scholar 

  59. X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D.G. Ivey, W. Wei, Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Appl. Interface Sci. 8(29), 18841–18848 (2016)

    Article  CAS  Google Scholar 

  60. X. Zhang, W. Qin, D. Li, D. Yan, B. Hu, Z. Sun, L. Pan, Metal–organic framework derived porous CuO/Cu2O composite hollow octahedrons as high performance anode materials for sodium ion batteries. Chem. Commun. 51(91), 16413–16416 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20201071), National and Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource (SF201907), Natural Science Project of the Jiangsu Higher Education Institutions (19KJB480001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis, and first draft of the manuscript were made by XG. Data analysis was done by MZ and LY. Material preparation was made by LG and XK. Materials characterization was done by YZ. XZ and GS prepared the final draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaojie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1354.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhu, M., Long, Y. et al. ZnO embedded in nitrogen-doped carbon hybrid derived from zeolitic-imidazolate frameworks via mechanochemistry technique as anode material for sodium-ion batteries. J Mater Sci: Mater Electron 34, 532 (2023). https://doi.org/10.1007/s10854-023-09957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09957-9

Navigation