Skip to main content

Advertisement

Log in

Cu-MOF-derived CuO/NiO/Ni3(VO4)2 composite materials with improved electrochemical performance for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, after the synthesis of Cu-based metal–organic framework (MOF), to take its advantage in electrode active material of a supercapacitor, Nickel and Vanadium were added to the synthesized MOF through post-synthetic procedures and after calcination at a temperature of 500 °C, two composites of CuO/NiO, and CuO/NiO/Ni3(VO4)2 were achieved to study the effect of Nickel Vanadate on the supercapacitive performance of the CuO/NiO composite. The synthesized active materials were characterized with powder X-ray diffraction analysis, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, as well as surface area and porosity analyzer. Moreover, to observe the effect of various electrolytes on the electrochemical performance of each composite the cyclic voltammetry and galvanostatic charge–discharge studies were performed in four different environments of Na2SO4 (1 M), NaOH (3 M), KOH (3 M), and LiOH (3 M). The results of CV and GCD tests revealed the pseudocapacitive behavior of the fabricated active material, in which the CuO/NiO/Ni3(VO4)2 electrode yielded the maximum storage capacity at a gravimetric current of 2 A/g with the amount of 37.04 C/g in LiOH (3 M) electrolyte. Moreover, Dunn's calculation revealed that both surface- and diffusion-dominated processes contributed differently to the electrode's overall capacity for charge storage in all electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A. Kaabeche, Y. Bakelli, Energy Convers. Manag. 193, 162 (2019)

  2. P. Gong, D. Wang, C. Zhang, Y. Wang, Z. Jamili-Shirvan, K. Yao, X. Wang, NPJ Mater. Degrad. 6, 77 (2022)

    Article  CAS  Google Scholar 

  3. P. Liu, S. Li, L. Zhang, X. Yin, Y. Ma, Catal. Sci. Technol. 12, 4193 (2022)

    CAS  Google Scholar 

  4. Y. Zhao, J. Mater. Res. Technol. 21, 546 (2022)

    Article  CAS  Google Scholar 

  5. J. Yu, Y.M. Tang, K.Y. Chau, R. Nazar, S. Ali, W. Iqbal, Renew. Energy 182, 216 (2022)

  6. S.V. Venkatesan, A. Nandy, K. Karan, S.R. Larter, V. Thangadurai, Electrochem. Energy Rev. 5, 16 (2022)

  7. A.G. Olabi, M.A. Abdelkareem, Renew. Sustain. Energy Rev. 158, 112111 (2022)

  8. J. Masa, C. Andronescu, W. Schuhmann, Angew. Chemie Int. Ed. 59, 15298 (2020)

  9. S.R. Sinsel, R.L. Riemke, V.H. Hoffmann, Renew. Energy 145, 2271 (2020)

  10. A. Razmjoo, L.G. Kaigutha, M.A.V. Rad, M. Marzband, A. Davarpanah, M. Denai, Renew. Energy 164, 46 (2021)

  11. S. Zhao, H. Li, B. Wang, X. Yang, Y. Peng, H. Du, Y. Zhang, D. Han, Z. Li, Fuel 321, 124124 (2022)

    Article  CAS  Google Scholar 

  12. C. Wang, L. Sheng, M. Jiang, X. Lin, Q. Wang, M. Guo, G. Wang, X. Zhou, X. Zhang, J. Shi, L. Jiang, J. Power Sources 555, 232405 (2023)

    Article  CAS  Google Scholar 

  13. L. Ren, F. Kong, X. Wang, Y. Song, X. Li, F. Zhang, N. Sun, H. An, Z. Jiang, J. Wang, Nano Energy 98, 107248 (2022)

    Article  CAS  Google Scholar 

  14. S. Lu, Z. Yin, S. Liao, B. Yang, S. Liu, M. Liu, L. Yin, W. Zheng, Energy Rep. 8, 33 (2022)

    Article  Google Scholar 

  15. Y. Xu, X. Chen, H. Zhang, F. Yang, L. Tong, Y. Yang, D. Yan, A. Yang, M. Yu, Z. Liu, Y. Wang, Int. J. Energy Res. 46, 19615 (2022)

    Article  Google Scholar 

  16. H. Zhao, Y. Lei, Adv. Energy Mater. 10, 2001460 (2020)

  17. M. Shi, H. Zhu, C. Chen, J. Jiang, L. Zhao, C. Yan, Int. J. Miner. Metall. Mater. 30, 25 (2023)

    Article  CAS  Google Scholar 

  18. D. Zhang, C. Tan, T. Ou, S. Zhang, L. Li, X. Ji, Energy Rep. 8, 4525 (2022)

    Article  Google Scholar 

  19. T. Wei, J. Lu, P. Zhang, G. Yang, C. Sun, Y. Zhou, Q. Zhuang, Y. Tang, Chinese Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107947

    Article  Google Scholar 

  20. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang, Y. Tang, Natl. Sci. Rev. 8, nwaa178 (2021)

    CAS  Google Scholar 

  21. Z. Zhang, L. Feng, H. Liu, L. Wang, S. Wang, Z. Tang, Inorg. Chem. Front. 9, 35 (2022)

    Article  CAS  Google Scholar 

  22. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.-M. Cheng, Nat. Chem. 10, 667 (2018)

    Article  CAS  Google Scholar 

  23. X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  24. B. Ji, F. Zhang, X. Song, Y. Tang, Adv. Mater. 29, 1700519 (2017)

    Article  Google Scholar 

  25. X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang, Adv. Mater. 28, 9979 (2016)

    Article  CAS  Google Scholar 

  26. L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, H. Cui, Y. Zhao, M. Cao, Carbon N. Y. 183, 721 (2021)

    Article  CAS  Google Scholar 

  27. C. Liu, P. Ying, Chinese Phys. B 31, 26201 (2022)

    Article  Google Scholar 

  28. Q. Zhang, C. Xin, F. Shen, Y. Gong, Y. Zi, H. Guo, Z. Li, Y. Peng, Q. Zhang, Z.L. Wang, Energy Environ. Sci. 15, 3688 (2022)

    Article  CAS  Google Scholar 

  29. S. Chen, A. Skordos, V.K. Thakur, Mater. Today Chem. 17, 100304 (2020)

  30. C. Zhao, M. Xi, J. Huo, C. He, Phys. Chem. Chem. Phys. 23, 23219 (2021)

    Article  CAS  Google Scholar 

  31. T. Zhang, L. Yang, C. Zhang, Y. Feng, J. Wang, Z. Shen, Q. Chen, Q. Lei, Q. Chi, Mater. Horizons 9, 1273 (2022)

    Article  CAS  Google Scholar 

  32. L. Wang, P. Gong, W. Li, T. Luo, B. Cao, Tribol. Int. 146, 106228 (2020)

  33. M.T. Rahman, M.A. Hoque, G.T. Rahman, M.A. Gafur, R.A. Khan, M.K. Hossain, Results Phys. 13, 102264 (2019)

  34. A. Lavin, R. Sivasamy, E. Mosquera, M.J. Morel, Surf. Interfaces 17, 100367 (2019)

  35. Q. Zeng, B. Bie, Q. Guo, Y. Yuan, Q. Han, X. Han, M. Chen, X. Zhang, Y. Yang, M. Liu, P. Liu, H. Deng, X. Zhou, Proc. Natl. Acad. Sci. 117, 17558 (2020)

    Article  CAS  Google Scholar 

  36. Y. Yang, S.-Q. Wang, H. Wen, T. Ye, J. Chen, C.-P. Li, M. Du, Angew. Chemie Int. Ed. 58, 15362 (2019)

    Article  CAS  Google Scholar 

  37. W. Gong, Z. Chen, J. Dong, Y. Liu, Y. Cui, Chem. Rev. 122, 9078 (2022)

  38. W. Zhou, Y. Tang, X. Zhang, S. Zhang, H. Xue, H. Pang, Coord. Chem. Rev. 477, 214949 (2023)

  39. X.-Y. Li, Y. Song, C.-X. Zhang, C.-X. Zhao, C. He, Sep. Purif. Technol. 279, 119608 (2021)

    Article  CAS  Google Scholar 

  40. B. Chameh, M. Moradi, S. Hajati, F. Alikhani Hessari, Physica E 126, 114442 (2021)

    Article  CAS  Google Scholar 

  41. B. Chameh, M. Moradi, F. Alikhani Hessari, Synth. Met. 269, 116540 (2020)

    Article  CAS  Google Scholar 

  42. Y. Zhang, H. Chen, C. Guan, Y. Wu, C. Yang, Z. Shen, Q. Zou, A.C.S. Appl, Mater. Interfaces. 10, 18440 (2018)

    Article  CAS  Google Scholar 

  43. S. Ezhil Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020)

    Article  CAS  Google Scholar 

  44. S. Ezhil Arasi, R. Ranjithkumar, P. Devendran, M. Krishnakumar, A. Arivarasan, J. Alloys Compd. 857, 157628 (2021)

    Article  CAS  Google Scholar 

  45. Y. Yang, P. Shukla, S. Wang, V. Rudolph, X.-M. Chen, Z. Zhu, RSC Adv. 3, 17065 (2013)

    Article  CAS  Google Scholar 

  46. I. Fleming, D. Williams, Infrared and raman spectra, in Spectroscopic methods in organic chemistry. ed. by I. Fleming, D. Williams (Springer International Publishing, Cham, 2019), pp.85–121

    Chapter  Google Scholar 

  47. Y. Liu, P. Ghimire, M. Jaroniec, J. Colloid Interface Sci. 535, 122 (2019)

    Article  CAS  Google Scholar 

  48. C. Wang, X. Qian, X. An, Cellulose 22, 3789 (2015)

    Article  CAS  Google Scholar 

  49. N.R. Dhumal, M.P. Singh, J.A. Anderson, J. Kiefer, H.J. Kim, J. Phys. Chem. C 120, 3295 (2016)

    Article  CAS  Google Scholar 

  50. S. Lin, Z. Song, G. Che, A. Ren, P. Li, C. Liu, J. Zhang, Microporous Mesoporous Mater. 193, 27 (2014)

    Article  CAS  Google Scholar 

  51. M.A. Gondal, T.A. Saleh, Q.A. Drmosh, Appl. Surf. Sci. 258, 6982 (2012)

    Article  CAS  Google Scholar 

  52. Y.C. Hong, H.S. Uhm, Soft Nanosci. Lett. 03, 83 (2013)

    Article  CAS  Google Scholar 

  53. S.G. Hosseini, R. Abazari, RSC Adv. 5, 96777 (2015)

    Article  CAS  Google Scholar 

  54. A.G. Ramu, M.L.A. Kumari, M.S. Elshikh, H.H. Alkhamis, A.F. Alrefaei, D. Choi, Chemosphere 271, 129475 (2021)

    Article  CAS  Google Scholar 

  55. L. Zhou, Z. Niu, X. Jin, L. Tang, L. Zhu, ChemistrySelect 3, 12865 (2018)

    Article  CAS  Google Scholar 

  56. B. Liu, Y. Li, S.C. Oh, Y. Fang, H. Xi, RSC Adv. 6, 61006 (2016)

    Article  CAS  Google Scholar 

  57. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  CAS  Google Scholar 

  58. R. Kumar, P.K. Gupta, P. Rai, A. Sharma, New J. Chem. 42, 1243 (2018)

    Article  CAS  Google Scholar 

  59. R. Hamidi, S. Ghasemi, S.R. Hosseini, Ultrason. Sonochem. 62, 104869 (2020)

    Article  CAS  Google Scholar 

  60. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C. 111, 14925 (2007)

    Article  CAS  Google Scholar 

  61. D.P. Dubal, V.J. Fulari, C.D. Lokhande, Microporous Mesoporous Mater. 151, 511 (2012)

    Article  CAS  Google Scholar 

  62. M. Balasubramaniam, S. Balakumar, AIP Conf. Proc. 2115, 030538 (2019)

  63. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  CAS  Google Scholar 

  64. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  65. G.Z. Chen, Int. Mater. Rev. 62, 173 (2017)

    Article  CAS  Google Scholar 

  66. G.Z. Chen, Prog. Nat. Sci. Mater. Int. 23, 245 (2013)

    Article  CAS  Google Scholar 

  67. G.Z. Chen, Curr. Opin. Electrochem. 21, 358 (2020)

    Article  CAS  Google Scholar 

  68. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 9, 1902007 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere appreciation to the Materials and Energy Research Center (MERC) for financial support and instrumental assistance in this work.

Funding

The author Morteza Moradi received funding from 1401258 (Funder ID 63716) for this study.

Author information

Authors and Affiliations

Authors

Contributions

BC: Methodology, Data Curation, Visualization, Writing—Original Draft. MP: Investigation, Methodology, Software, Conceptualization. MK: Methodology, Visualization. MM: Validation, Writing—Review & Editing, Visualization, Supervision.

Corresponding author

Correspondence to Morteza Moradi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chameh, B., Pooriraj, M., Keyhan, M. et al. Cu-MOF-derived CuO/NiO/Ni3(VO4)2 composite materials with improved electrochemical performance for supercapacitor. J Mater Sci: Mater Electron 34, 525 (2023). https://doi.org/10.1007/s10854-023-09952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09952-0

Navigation