Skip to main content
Log in

Effect of BaO–2B2O3 sintering aid on the structural and electrical properties of high temperature piezoelectric ceramic Bi3TiNbO9

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High temperature piezoelectric ceramic Bi3TiNbO9 with the addition of BaO–2B2O3 as sintering aid was prepared by a solid-state reaction method. The addition of BaO–2B2O3 can promote the growth of grains and increase the density of the samples. Both the ferroelectric and piezoelectric properties of Bi3TiNbO9 with the addition of BaO–2B2O3 increase remarkably compared with Bi3TiNbO9. The maximum remanent polarization and piezoelectric coefficient of the sample with the addition of 2 wt% BaO–2B2O3 can reach 8.67 µC/cm2 of 14 pC/N, which is about 4 and 7 times as large as the corresponding values of Bi3TiNbO9. The increased electrical properties can be ascribed to the dense morphology, the increased structural distortion, and the reduced concentration of oxygen vacancies. This study is useful for the preparation of high-temperature piezoelectric ceramic Bi3TiNbO9 with reasonable electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. C.S. Chou, J.H. Chen, R.Y. Yang, S.W. Chou, Powder Technol. 202, 39–45 (2010)

    Article  CAS  Google Scholar 

  2. Y.T. Sakamoto, W. Ichihara, W. Sakamoto, Jpn J. Appl. Phys. 60, SFFC03 (2021)

    Article  CAS  Google Scholar 

  3. J. Yuan, R. Nie, Q. Chen, D.Q. Xiao, J.G. Zhu, Mater. Res. Bull. 115, 70–79 (2019)

    Article  CAS  Google Scholar 

  4. Z.H. Peng, D.X. Yan, Q. Chen, D.Q. Xin, D. Liu, D.Q. Xiao, J.G. Zhu, Curr. Appl. Phys. 14, 1861–1866 (2014)

    Article  Google Scholar 

  5. Z.G. Gai, M.L. Zhao, W.B. Su, C.L. Wang, J. Liu, J.L. Zhang, J. Electroceram. 31, 143–147 (2013)

    Article  CAS  Google Scholar 

  6. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, Mater. Lett. 205, 178–181 (2017)

    Article  CAS  Google Scholar 

  7. C. Kai, P.Y. Deng, Y.L. Wang, D. Guo, Sens. Actuator A 261, 311–316 (2017)

    Article  Google Scholar 

  8. H.J. Zhou, S.Z. Wang, D.W. Wu, Q. Chen, Y. Chen, Materials 14, 5598 (2021)

    Article  CAS  Google Scholar 

  9. Z.H. Zhang, J.Y. Li, L.L. Liu, J.H. Sun, J.G. Hao, W. Li, Phys. B 580, 411920 (2020)

    Article  CAS  Google Scholar 

  10. J. Yuan, R. Nie, Q. Chen, J. Xing, J.G. Zhu, J. Alloys Compd. 785, 475–483 (2019)

    Article  CAS  Google Scholar 

  11. L. Sagalowicz, F. Chu, P.D. Martin, D. Damjanovic, J. Appl. Phys. 88, 7258–7263 (2000)

    Article  CAS  Google Scholar 

  12. K. Dahake, P. Jain, O. Subohi, J. Mater. Sci.  32, 26770–26785 (2021)

    CAS  Google Scholar 

  13. Y.H. Gu, Y.X. Li, F.H. Zheng, X.S. Wang, J. Mater. Sci. 28, 501–506 (2017)

    CAS  Google Scholar 

  14. Y.H. Zhang, P.M. Huang, L.L. Zhu, J. Du, W.F. Bai, M. Lin, P. Zheng, L. Zheng, Y. Zhang, Int. J. Appl. Ceram. Technol. 17, 2407–2415 (2020)

    Article  CAS  Google Scholar 

  15. S.V. Zubkov, V.G. Vlasenko, Phys. Solid State 59, 2325–2330 (2017)

    Article  CAS  Google Scholar 

  16. A.I. Spitsin, A.A. Bush, K.E. Kamentsev, Sci. Rep. 10, 22198 (2020)

    Article  CAS  Google Scholar 

  17. A.I. Spitsin, A.A. Bush, K.E. Kamentsev, A.G. Segalla, A.M. Khramtsov, N.A. Chistyakova, Inorg. Mater. 54, 736–743 (2018)

    Article  CAS  Google Scholar 

  18. Q. Wang, C.M. Wang, J.F. Wang, S.J. Zhang, Ceram. Int. 42, 6993–7000 (2016)

    Article  CAS  Google Scholar 

  19. Y. Shimakawa, Y. Kubo, Y. Tauchi, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 77, 2749–2751 (2000)

    Article  CAS  Google Scholar 

  20. A.A. Kamal, H.Y. Morshidy, A. Salem, Abd El-razek Mahmoud, Mater. Chem. Phys. 288, 126420 (2022)

    Article  CAS  Google Scholar 

  21. S.J. Sun, X.F. Yin, Crystals 10, 710 (2020)

    Article  CAS  Google Scholar 

  22. H.K. Kim, S.H. Lee, S.G. Lee, K.T. Lee, Y.H. Lee, Mater. Res. Bull. 58, 218–222 (2014)

    Article  CAS  Google Scholar 

  23. M.A. Basheer, G. Prasad, G.S. Kumar, N.V. Prasad, Ferroelectrics 517, 75–80 (2017)

    Article  Google Scholar 

  24. M.A. Basheer, G. Prasad, G.S. Kumar, N.V. Prasad, Bull. Mater. Sci. 42, 114 (2019)

    Article  Google Scholar 

  25. W.B. Ji, R.Q. Chu, Z.J. Xu, J.G. Hao, R.F. Cheng, X.Y. Chen, Y. Xu, J. Mater. Sci.  26, 5686–5689 (2015)

    CAS  Google Scholar 

  26. S.K. Patri, R.N.P. Choudhary, Appl. Phys. A 94, 321–327 (2009)

    Article  CAS  Google Scholar 

  27. C.B. Pan, G.C. Zhao, S.M. Li, J.M.Z. Wang, L.H. Yin, W.H. Song, X.B. Zhu, J. Yang, Y.P. Sun, J. Appl. Phys. 130, 244102 (2021)

    Article  CAS  Google Scholar 

  28. J. Xing, Z. Tan, T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Acta Phys. Sin 69, 127707 (2020)

    Article  Google Scholar 

  29. C.Y. Yin, L. Zheng, P. Zheng, W.F. Bai, L.L. Li, F. Wen, Y. Zhang, Trans. Nonferrous Met. Soc. China 31, 2442–2453 (2021)

    Article  Google Scholar 

  30. X.D. Li, Z.N. Chen, L.S. Sheng, L.L. Li, W.F. Bai, F. Wen, P. Zheng, W. Wu, L. Zheng, Y. Zheng, J. Eur. Ceram. Soc. 39, 2050–2057 (2019)

    Article  CAS  Google Scholar 

  31. D.W. Hou, H.Q. Fan, Y.Q. Chen, Y.X. Jia, W.J. Wang, J. Alloys Compd. 921, 166065 (2022)

    Article  CAS  Google Scholar 

  32. Z.Y. Zhou, X.L. Dong, H. Chen, H.X. Yan, J. Am. Ceram. Soc. 89, 1756–1760 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFA0403502) and the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1832115).

Author information

Authors and Affiliations

Authors

Contributions

MT and JY: contributed to writing of the original draft. MT and CP: contributed to material preparation and data collection. LY, WS, XZ, and YS: contributed to data analysis and manuscript preparation. JY: also contributed to the conception of the study, project administration, and funding acquisition.

Corresponding author

Correspondence to J. Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, M., Pan, C.B., Yin, L.H. et al. Effect of BaO–2B2O3 sintering aid on the structural and electrical properties of high temperature piezoelectric ceramic Bi3TiNbO9. J Mater Sci: Mater Electron 34, 535 (2023). https://doi.org/10.1007/s10854-023-09946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09946-y

Navigation