Skip to main content
Log in

Photoelectric and photocatalytic properties of long-time annealing Mn–Co–Ni–O thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mn1.9Co0.8Ni0.3O4 (Mn–Co–Ni–O) thin films are prepared by magnetron sputtering method. We compared the resistivity of samples annealed at 400 °C (MCNO400) and 600 °C (MCNO600) separately and found that the MCNO400 sample has lower resistivity and wider band gap, which results from the discrepancy of grain morphology and ion number. Annealed Mn–Co–Ni–O thin films also exhibit similar photocatalytic effect to ZnO thin film in Fenton photo degradation of methylene blue (MB) dye solution. However, the MCNO400 film has better stability and the Mn–Co–Ni–O film has broader spectrum absorption compared with ZnO thin film, which will enhance the utilization of sunlight and the separation efficiency of photo-generated electrons and holes. This indicates that the Mn–Co–Ni–O film has potential industrial applications to replace ZnO. Furthermore, type-I N–N heterojunction is also constructed to enhance the number of electrons and holes involved in photocatalysis in Mn–Co–Ni–O thin films with ZnO coating to improve the photocatalytic effect. Experimentally, the photocatalytic rate of MCNO600/ZnO thin film overrides that of the MCNO400/ZnO thin film, and they can degrade MB dye solution stably and efficiently by the analysis of kapp values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X.L. Zhu, X.Z. Liang, P. Wang, Y. Dai, B.B. Huang, Appl. Surf. Sci. 456, 493–500 (2018)

    Article  CAS  Google Scholar 

  2. X.Y. Xue, W.L. Zang, P. Deng, Q. Wang, L.L. Xing, Y. Zhang, Z.L. Wang, Nano Energy 13, 414–422 (2015)

    Article  CAS  Google Scholar 

  3. Y.G. Qiu, K.Y. Yan, H. Deng, S.H. Yang, Nano Lett. 12, 407–413 (2012)

    Article  CAS  Google Scholar 

  4. U. Chakraborty, G. Bhanjana, J. Adam, Y.K. Mishra, G. Kaur, G.R. Chaudhary, A. Kaushik, RSC Adv. 10, 27764 (2020)

    Article  CAS  Google Scholar 

  5. A. Jiamprasertboon, A. Kafizas, M. Sachs, M. Ling, A.M. Alotaibi, Y. Lu, T. Siritanon, I.P. Parkin, C.J. Carmalt, Chem. Eur. J. 25, 11337–11345 (2019)

    CAS  Google Scholar 

  6. G.T. Chavan, V.M. Prakshale, S.S. Kamble, S.T. Pawar, A. Sikora, E.C. Cho, J. Yi, L.P. Deshmukh, Int. J. Energy Res. 1–12 (2020)

  7. G.T. Chavan, A. Sikora, N.B. Chaure, L.P. Deshmukh, C.W. Jeon, Mater. Lett. 320, 132353 (2022)

  8. Y.M. Hungea, A.A. Yadavc, S.W. Kangc, H. Kima, J. Alloy. Compd., 167133 (2022)

  9. G.T. Chavan, N.M. Shinde, F.A. Sabah, S.S. Patil, A. Sikora, V.M. Prakshale, S.S. Kamble, N.B. Chaure, L.P. Deshmukh, A. Kim, C.W. Jeon, Appl. Surf. Sci., 151581 (2022)

  10. F. Zhang, W. Zhou, C. OuYang, J. Wu, Y.Q. Gao, Z.M. Huang, AIP Adv. 5, 683–688 (2015)

    Google Scholar 

  11. L.J. Wu, J.W. Lang, S. Wang, P. Zhang, X.B. Yan, Electrochim. Acta 203, 128–135 (2016)

    Article  CAS  Google Scholar 

  12. Q.Q. Ren, K. Goh, F.D. Yu, Z.B. Wang, Ceram. Int. 47, 17540–17549 (2021)

    Article  CAS  Google Scholar 

  13. S.H. Ruan, W.Q. Huang, M.J. Zhao, H.Y. Song, Z.H. Gao, Mat. Sci. Semicon. Proc. 107, 105 (2020)

    Article  CAS  Google Scholar 

  14. G. Amrita, M. Anup, Mater. Lett. 164, 221–224 (2016)

    Article  Google Scholar 

  15. X.M. Song, C.X. Yuan, Y.M. Wang, B.X. Wang, H. Mao, S.Y. Wu, Y. Zhang, Appl. Surf. Sci. 455, 181–186 (2018)

    Article  CAS  Google Scholar 

  16. A. Kadam, R. Dhabbe, A. Gophane, T. Sathe, K. Garadkar, J. Photochem. Photobiol. B 154, 24–33 (2016)

    Article  CAS  Google Scholar 

  17. M. Pirhashemi, S. Elhag, R.E. Adam, A.H. Yangjeh, X.J. Liu, M.W.O. Nur, RSC Adv. 9, 7992 (2019)

    Article  CAS  Google Scholar 

  18. M.S.A. Wahab, J. Electron. Mater. 50, 4364–4372 (2021)

    Article  Google Scholar 

  19. X.B. Feng, C.W. Chen, C. He, S. Chai, Y.K. Yu, J. Cheng, J. Hazard. Mater. 383, 121143 (2020)

    Article  CAS  Google Scholar 

  20. R. Dannenberg, S. Baliga, R.J. Gambino, A.H. King, A.P. Doctor, J. Appl. Phys. 86, 514–523 (1999)

    Article  CAS  Google Scholar 

  21. W. Zhou, X.F. Xu, C. Ouyang, J. Wu, Y.Q. Gao, Z.M. Huang, J. Mater. Sci. -Mater. El. 25, 1959–1964 (2014)

    Article  CAS  Google Scholar 

  22. W.F. Wei, W.X. Chen, D.G. Ivey, Chem. Mater. 20, 1941–1947 (2008)

    Article  CAS  Google Scholar 

  23. R. Schmidt, A. Basu, A.W. Brinkman, Phys. Rev. B 72, 115101 (2005)

    Article  Google Scholar 

  24. K.J. Kim, H.K. Kim, Y.R. Park, G.Y. Ahn, C.S. Kim, J.Y. Park, J. Magn. Magn. Mater. 300, 300–305 (2006)

    Article  CAS  Google Scholar 

  25. L.B. Zhang, Y. Hou, W. Zhou, Y.Q. Gao, J. Wu, Z.M. Huang, J.H. Chu, Solid State Commun. 159, 32–35 (2013)

    Article  CAS  Google Scholar 

  26. K.J. Kim, J.H. Lee, Solid State Commun. 141, 99–103 (2007)

    Article  CAS  Google Scholar 

  27. Z.M. Huang, W. Zhou, C. Ouyang, J. Wu, F. Zhang, J.G. Huang, Y.Q. Gao, J.H. Chu, Sci. Rep-UK 5, 10899 (2015)

    Article  Google Scholar 

  28. Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, L.B. Zhang, J.H. Chu, Appl. Phys. A 114, 829–832 (2014)

    Article  CAS  Google Scholar 

  29. M.S. Abdel-wahab, A. Jilani, A. Alshahrie, A.H. Hammad, J. Mater. Sci. Mater. Electron. 29, 3056 (2018)

    Article  CAS  Google Scholar 

  30. P. Shewale, Y. Yu, Ceram. Int. 43, 4175 (2017)

    Article  CAS  Google Scholar 

  31. C.H. Min, S. Cho, S.H. Lee, D.Y. Cho, W.G. Park, J.G. Chung, E. Lee, J.C. Lee, B. Anass, J.H. Lee, C.S. Hwang, S.J. Oh, Appl. Phys. Lett. 96, 201907 (2010)

    Article  Google Scholar 

  32. J. Liu, S. Ma, X. Huang, L. Ma, F. Li, F. Yang, Q. Zhao, X. Zhang, Superlattice. Microst. 52, 765 (2012)

    Article  CAS  Google Scholar 

  33. L. Ma, X. Ai, X. Huang, S. Ma, Superlattice. Microst. 50, 703 (2011)

    Article  CAS  Google Scholar 

  34. Y.C. Ye, H. Yang, X.X. Wang, W.J. Feng, Photocatalytic. Mat. Sci. Semicon. Proc. 82, 14–24 (2018)

    Article  CAS  Google Scholar 

  35. G.L. Ren, K. Zhao, L. Zhao, RSC Adv. 10, 39973 (2020)

    Article  CAS  Google Scholar 

  36. R.S. Sabry, W.J. Aziz, M.I. Rahmah, Mater. Technol. 35, 326–334 (2020)

    Article  CAS  Google Scholar 

  37. S.P. Prakoso, V. Paramarta, H. Tju, A. Taufik, R. Saleh, J. Phys. Conf. Ser. 776, 012051 (2016)

    Article  Google Scholar 

  38. Y.H. Xiao, L. Carena, M.T. Näsi, A.V. Vähätalo, Water Res. 177, 115782 (2020)

    Article  CAS  Google Scholar 

  39. Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem 6, 1543–1559 (2020)

    Article  CAS  Google Scholar 

  40. Y.X. Zhao, Y.T. Chi, C. Tian, Y. Liu, H.B. Li, A.Z. Wang, Water Res. 177, 115789 (2020)

    Article  CAS  Google Scholar 

  41. F. Zhang, Z.M. Huang, Appl. Phys. Lett. 113, 061601 (2018)

    Article  Google Scholar 

  42. Y. Yang, Z.S. Wu, R.P. Yang, Y.F. Li, X.X. Liu, L.H. Zhang, B. Yu, Appl. Surf. Sci. 539, 148220 (2021)

    Article  CAS  Google Scholar 

  43. J.S. Lan, B. He, C.Y. Haw, M.Y. Gao, I. Khan, R. Zheng, S. Guo, J. Zhao, Z. Wang, S. Huang, S. Li, J. Kang, Appl. Surf. Sci. 529, 147023 (2020)

    Article  CAS  Google Scholar 

  44. K.S. Babu, P.F. Pinheiro, C.F. Marques, G. Justino, S.M. Andrade, M.M. Alves, Sci. Rep. -UK 10, 15018 (2020)

    Article  CAS  Google Scholar 

  45. W.S. Chae, J. Yun, S.H. Nam, S.G. Lee, W.G. Yang, H. Yoon, M. Park, S. Jeon, ACS Appl. Mater. Inter. 10, 14079–14086 (2018)

    Article  CAS  Google Scholar 

  46. G. Pozina, L.L. Yang, Q.X. Zhao, L. Hultman, P.G. Lagoudakis, Appl. Phys. Lett. 97, 131909 (2010)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 20ZR1423400) and the Shanghai Engineering Technology Research Centre of Deep Offshore Material (Grant No. 19DZ2253100).

Author information

Authors and Affiliations

Authors

Contributions

FZ: conceptualization, methodology, writing-original draft, writing-review & editing, funding acquisition. JJ: investigation and writing-review. DH: investigation. LW: writing-review. YL: writing-review & editing, funding acquisition. YZ: project administration, writing-review & editing.

Corresponding authors

Correspondence to Fei Zhang or Yanhua Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Ju, J., Huo, D. et al. Photoelectric and photocatalytic properties of long-time annealing Mn–Co–Ni–O thin film. J Mater Sci: Mater Electron 34, 523 (2023). https://doi.org/10.1007/s10854-023-09934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09934-2

Navigation