Skip to main content
Log in

Structural, transport, and thermoelectric properties of electron beam-irradiated Bi1.2Pb0.33Sr1.54Ca2.06Co3Oy cobalties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electron beam (EB) irradiation has been extensively studied as a tool for tailoring the structural and electrical properties of a material. In this work, the influence of EB irradiation on the structural and transport properties of p-type thermoelectric \({\mathrm{Bi}}_{1.2}{\mathrm{Pb}}_{0.33}{\mathrm{Sr}}_{1.54}{\mathrm{Ca}}_{2.06}{\mathrm{Co}}_{3}{\mathrm{O}}_{y}\) misfit cobalties has been investigated. The EB doses range from 10 to 50 \(\mathrm{kGy}\). The X-ray diffraction patterns are analysed using Rietveld refinement, which revealed that pristine and irradiated samples possess a misfit-layered crystal structure composed of two monoclinic subsystems with different b-axis lengths. The EB irradiation caused the modification in lattice parameters, resulting in a moderate increase in misfitness (b1/b2) in the structures. Furthermore, the increase in EB irradiation dosages led to decreases in resistivity and an increase in the Seebeck coefficient, which can be attributed to the misfitness (b1/b2). The highest power factor is noted in the \(50\mathrm{ kGy}\)  EB-irradiated sample possessing a value of 284.51 µW/mK2 at  \(224\mathrm{K}\) and may be considered a promising material for thermoelectric device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. E. Snyder, G.J. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  2. W. Di Liu, Z.G. Chen, J. Zou, Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv. Energy Mater. 8, 1–18 (2018). https://doi.org/10.1002/aenm.201800056

    Article  CAS  Google Scholar 

  3. A. Sotelo, E. Guilmeau, M.A. Madre, S. Marinel, J.C. Diez, M. Prevel, Fabrication and properties of textured Bi-based cobaltite thermoelectric rods by zone melting. J. Eur. Ceram. Soc. 27, 3697–3700 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.020

    Article  CAS  Google Scholar 

  4. Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3. J. Alloys Compd. 315, 193–197 (2001). https://doi.org/10.1016/S0925-8388(00)01275-5

    Article  CAS  Google Scholar 

  5. A.M. Ibrahim, D.A. Thompson, Thermoelectric properties of BiSb alloys. Mater. Chem. Phys. 12, 29–36 (1985). https://doi.org/10.1016/0254-0584(85)90034-3

    Article  CAS  Google Scholar 

  6. J. Yang, T. Aizawa, A. Yamamoto, T. Ohta, Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1–x prepared via bulk mechanical alloying and hot pressing. J. Alloys Compd. 309, 225–228 (2000). https://doi.org/10.1016/S0925-8388(00)01063-X

    Article  CAS  Google Scholar 

  7. H.Y. Lv, H.J. Liu, J. Shi, X.F. Tang, C. Uher, Optimized thermoelectric performance of Bi2Te3 nanowires. J. Mater. Chem. A. 1, 6831–6838 (2013). https://doi.org/10.1039/c3ta10804j

    Article  CAS  Google Scholar 

  8. C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.F. Li, J. He, L.D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018). https://doi.org/10.1126/science.aaq1479

    Article  CAS  Google Scholar 

  9. A. Nozariasbmarz, A. Agarwal, Z.A. Coutant, M.J. Hall, J. Liu, R. Liu, A. Malhotra, P. Norouzzadeh, M.C. Öztürk, V.P. Ramesh, Y. Sargolzaeiaval, F. Suarez, D. Vashaee, Thermoelectric silicides: A review. Jpn. J. Appl. Phys. (2017). https://doi.org/10.7567/JJAP.56.05DA04

    Article  Google Scholar 

  10. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 1–24 (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  11. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. (2000). https://doi.org/10.1143/jjap.39.l1127

    Article  Google Scholar 

  12. G.S. Nolas, J. Poon, M. Kanatzidis, Recent developments in bulk thermoelectric materials. MRS Bull. 31, 199–205 (2006). https://doi.org/10.1557/mrs2006.45

    Article  CAS  Google Scholar 

  13. H.J. Kim, H. Bin Bae, Y. Park, S.H. Choi, Defect-engineered Si1-xGex alloy under electron beam irradiation for thermoelectrics. Rsc Adv. 2, 12670–12674 (2012). https://doi.org/10.1039/c2ra21567e

    Article  CAS  Google Scholar 

  14. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in single crystals. Phys. Rev. B 56, R12685–R12687 (1997). https://doi.org/10.1103/PhysRevB.56.R12685

    Article  CAS  Google Scholar 

  15. T. Takeuchi, T. Kondo, T. Takami, H. Takahashi, H. Ikuta, U. Mizutani, K. Soda, R. Funahashi, M. Shikano, M. Mikami, S. Tsuda, T. Yokoya, S. Shin, T. Muro, Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Phys. Rev. B 69, 1–9 (2004). https://doi.org/10.1103/PhysRevB.69.125410

    Article  CAS  Google Scholar 

  16. T. Fujii, I. Terasaki, T. Watanabe, A. Matsuda, Large in-plane anisotropy on resistivity and thermopower in the misfit layered oxide Bi2-xPbxSr2Co2Oy. Japanese J Appl. Phys. Lett. 41, 2–6 (2002). https://doi.org/10.1143/jjap.41.l783

    Article  Google Scholar 

  17. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, Thermoelectric properties of (Ca, Sr, Bi)2Co2O5 whiskers. Mater. Trans. 42, 956–960 (2001). https://doi.org/10.2320/matertrans.42.956

  18. S. Hébert, D. Berthebaud, R. Daou, Y. Bréard, D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, A. Maignan, Searching for new thermoelectric materials: Some examples among oxides, sulfides and selenides. J. Phys. Condens. Matter. (2016). https://doi.org/10.1088/0953-8984/28/1/013001

    Article  Google Scholar 

  19. T. Fujii, I. Terasaki, The effects of the misfit structure on thermoelectric properties of Bi2-xPbxSr2Co2Oy Single crystals, Int. Conf. Thermoelectr. ICT, Proc. 2002-Janua (2002) 199–202. https://doi.org/10.1109/ICT.2002.1190299.

  20. I. Terasaki, Cobalt oxides and Kondo semiconductors: A pseudogap system as a thermoelectric material. Mater. Trans. 42, 951–955 (2001). https://doi.org/10.2320/matertrans.42.951

    Article  CAS  Google Scholar 

  21. G.D. Mahan, J.O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 7436–7439. https://doi.org/10.1073/pnas.93.15.7436.

  22. A. Sotelo, G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, Improvement of thermoelectric properties of Ca 3Co 4O 9 using soft chemistry synthetic methods. J. Eur. Ceram. Soc. 32, 2415–2422 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.012

    Article  CAS  Google Scholar 

  23. K. Rubesova, T. Hlasek, V. Jakes, S. Huber, J. Hejtmanek, D. Sedmidubsky, Effect of a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox ceramics. J. Eur. Ceram. Soc. 35, 525–531 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.037

    Article  CAS  Google Scholar 

  24. L.H. Yin, R. Ang, Y.N. Huang, H.B. Jiang, B.C. Zhao, X.B. Zhu, W.H. Song, Y.P. Sun, The contribution of narrow band and modulation of thermoelectric performance in doped layered cobaltites Bi 2 Sr 2 Co 2 O y. Appl. Phys. Lett. DOI (2013). https://doi.org/10.1063/1.4705429

    Article  Google Scholar 

  25. L.H. Yin, R. Ang, Z.H. Huang, Y. Liu, S.G. Tan, Y.N. Huang, B.C. Zhao, W.H. Song, Y.P. Sun, Exotic reinforcement of thermoelectric power driven by Ca doping in layered Bi2Sr2 x Ca x Co2O y. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4801644

    Article  Google Scholar 

  26. A. Maignan, D. Pelloquin, S. Hebert, Y. Klein, M. Hervieu, Thermoelectric power in misfit cobaltites ceramics: optimization by chemical substitutions. Bol. La Soc. Esp. Ceram. y Vidr. 45, 122–125 (2006). https://doi.org/10.3989/cyv.2006.v45.i3.290

    Article  CAS  Google Scholar 

  27. Y. Tanaka, T. Fujii, M. Nakanishi, Y. Kusano, H. Hashimoto, Y. Ikeda, J. Takada, Systematic study on synthesis and structural, electrical transport and magnetic properties of Pb-substituted Bi-Ca-Co-O misfit-layer cobaltites. Solid State Commun. 141, 122–126 (2007). https://doi.org/10.1016/j.ssc.2006.10.015

    Article  CAS  Google Scholar 

  28. G. Constantinescu, S. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, Effect of Sr substitution for Ca on the Ca3Co4O 9 thermoelectric properties. J. Alloys Compd. 577, 511–515 (2013). https://doi.org/10.1016/j.jallcom.2013.07.005

    Article  CAS  Google Scholar 

  29. J.H. Markna, R.N. Parmar, D.G. Kuberkar, R. Kumar, D.S. Rana, S.K. Malik, Thickness dependent swift heavy ion irradiation effects on electronic transport of (La0.5 Pr0.2) Ba03 MnO 3 thin films. Appl. Phys. Lett. 88, 10–13 (2006). https://doi.org/10.1063/1.2192087

    Article  CAS  Google Scholar 

  30. A.B. Ravalia, M.V. Vagadia, P.G. Trivedi, P.S. Solanki, P.S. Vachhani, R.J. Choudhary, D.M. Phase, K. Asokan, N.A. Shah, D.G. Kuberkar, Modifications in device characteristics of La0.6Pr0.2Sr0.2MnO3/SrNb0.002Ti0.998O3 manganites by swift heavy ion irradiation. Indian J. Phys. 89, 137–142 (2015). https://doi.org/10.1007/s12648-014-0524-4

    Article  CAS  Google Scholar 

  31. B. Christopher, A. Rao, G.S. Okram, V. Chandra Petwal, V.P. Verma, J. Dwivedi, Comprehensive study on effect of electron beam irradiation on electrical, thermo-electric and magnetic properties of oxygen rich LaMnO3.15compound. J. Alloys Compd. 703, 216–224 (2017). https://doi.org/10.1016/j.jallcom.2017.01.229

    Article  CAS  Google Scholar 

  32. B. Christopher, A. Rao, V.C. Petwal, V.P. Verma, J. Dwivedi, W.J. Lin, Y.K. Kuo, Influence of electron beam irradiation on electrical, structural, magnetic and thermal properties of Pr0.8Sr0.2MnO3 manganites. Phys. B Condens. Matter. 502, 119–131 (2016). https://doi.org/10.1016/j.physb.2016.08.053

    Article  CAS  Google Scholar 

  33. S. Keshri, V. Dayal, S. Ravi, P.K. Nayak, AC susceptibility study in the single-phase Bi-2223 system. Czechoslov. J. Phys. 55, 73–84 (2005). https://doi.org/10.1007/s10582-005-0009-y

    Article  CAS  Google Scholar 

  34. A. Soni, G.S. Okram, Resistivity and thermopower measurement setups in the temperature range of 5–325 K. Rev. Sci. Instrum. 79, 1–4 (2008). https://doi.org/10.1063/1.3048545

    Article  CAS  Google Scholar 

  35. M. Tarachand, B. Saxena, G.S. Mukherjee, Okram, A load-based thermopower measurement setup in the temperature range of 5–330 K. Rev. Sci. Instrum. (2019). https://doi.org/10.1063/1.5090954

    Article  Google Scholar 

  36. R.A. Young, The rietveld method. Zeitschrift Für Krist. - Cryst. Mater. 210, 643–643 (1995). https://doi.org/10.1524/zkri.1995.210.8.643a

    Article  Google Scholar 

  37. C. Frontera, J. Rodríguez-Carvajal, FullProf as a new tool for flipping ratio analysis. Phys. B Condens. Matter. 335, 219–222 (2003). https://doi.org/10.1016/S0921-4526(03)00241-2

    Article  CAS  Google Scholar 

  38. T. Fujii, I. Terasaki, T. Watanabe, A. Matsuda, Large in-plane anisotropy on resistivity and thermopower in the misfit layered oxide Bi2-xPbxSr2Co2Oy. Japanese J. Appl. Physics (2002). https://doi.org/10.1143/jjap.41.l783

    Article  Google Scholar 

  39. X.G. Luo, Y.C. Jing, H. Chen, X.H. Chen, Intergrowth and thermoelectric properties in the Bi-Ca-Co-O system. J. Cryst. Growth. 308, 309–313 (2007). https://doi.org/10.1016/j.jcrysgro.2007.07.037

    Article  CAS  Google Scholar 

  40. G.K. Williamson, W.H. Hall, X-Ray broadening from filed aluminium and tungsten. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  41. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  42. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchem. Ein Lehrb. 277, 387–409 (1912). https://doi.org/10.1007/978-3-662-33915-2_7

    Article  Google Scholar 

  43. D. Kim, G. Lee, O. Kim, prepared by sputtering Structural, optical, and transport properties of nanocrystalline bismuth telluride thin fi lms treated with homogeneous electron beam irradiation and thermal annealing. Nanotechnology 27, 1–7 (2016). https://doi.org/10.1088/0957-4484/27/33/335703

    Article  CAS  Google Scholar 

  44. S. Kudo, S. Tanaka, K. Miyazaki, Y. Nishi, M. Takashiri, Anisotropic analysis of nanocrystalline bismuth telluride thin films treated by homogeneous electron beam irradiation. Mater. Trans. 58, 513–519 (2017). https://doi.org/10.2320/matertrans.M2016295

    Article  CAS  Google Scholar 

  45. P. Chettri, U. Deka, A. Rao, K.K. Nagaraja, G.S. Okram, V.C. Petwal, V.P. Verma, J. Dwivedi, Effect of high energy electron beam irradiation on the structural properties, electrical resistivity and thermopower of La0.5Sr0.5MnO3 manganites. Phys. B Condens. Matter. 585, 412119 (2020). https://doi.org/10.1016/j.physb.2020.412119

    Article  CAS  Google Scholar 

  46. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO 3 perovskites (R=Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B. 85, 1–9 (2012). https://doi.org/10.1103/PhysRevB.85.054303

    Article  CAS  Google Scholar 

  47. M. An, S.K. Yuan, Y. Wu, Q.M. Zhang, X.G. Luo, X.H. Chen, Raman spectra of a misfit layered Ca3 Co4 O9 single crystal. Phys. Rev. B 76, 1–5 (2007). https://doi.org/10.1103/PhysRevB.76.024305

    Article  CAS  Google Scholar 

  48. S.K. Yuan, M. An, Y. Wu, Q.M. Zhang, X.G. Luo, X.H. Chen, Raman-scattering study of misfit-layered (Bi, Pb)-Sr-Co-O single crystal. J. Appl. Phys. 101, 2–6 (2007). https://doi.org/10.1063/1.2745269

    Article  CAS  Google Scholar 

  49. Y. Huang, B. Zhao, S. Lin, Y. Sun, Enhanced thermoelectric performance induced by misplaced substitution in layered Ca 3 Co 4 O 9. J. Phys. Chem. C (2015). https://doi.org/10.1021/jp512012d

    Article  Google Scholar 

  50. V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C Solid State Phys. 21, L199–L201 (1988). https://doi.org/10.1088/0022-3719/21/7/007

    Article  Google Scholar 

  51. P. Lemmens, P. Scheib, Y. Krockenberger, L. Alff, F.C. Chou, C.T. Lin, H.U. Habermeier, B. Keimer, Comment on Raman spectroscopy study of Nax Co O2 and superconducting Nax Co O2 y H2O. Phys. Rev. B. (2007). https://doi.org/10.1103/PhysRevB.75.106501

    Article  Google Scholar 

  52. H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R. Lake, A.A. Balandin, Thermal conductivity of suspended graphene with defects. Nanoscale (2016). https://doi.org/10.1039/c6nr03470e

    Article  Google Scholar 

  53. B. Christopher, R. Thomas, A. Rao, G.S. Okram, V.C. Petwal, V.P. Verma, J. Dwivedi, A systematic study on effect of electron beam irradiation on electrical properties and thermopower of RE0.8Sr0.2CoO3 (RE=La, Pr) cobaltites. Phys. B Condens. Matter. 552, 170–177 (2019). https://doi.org/10.1016/j.physb.2018.10.012

    Article  CAS  Google Scholar 

  54. B. Christopher, A. Rao, U. Deka, S. Prasad K, G.S. Okram, G. Sanjeev, V. Chandraetwal, V.P. Verma, J. Dwivedi, Electrical, thermal and magnetic studies on 7.5 MeV electron beam irradiated PrCoO3 polycrystalline samples. Phys. B Condens. Matter. 540, 26–32 (2018). https://doi.org/10.1016/j.physb.2018.04.026

    Article  CAS  Google Scholar 

  55. C.J. Benedict, A. Rao, G. Sanjeev, G.S. Okram, P.D. Babu, A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3. J. Magn. Magn. Mater. 397, 145–151 (2016). https://doi.org/10.1016/j.jmmm.2015.08.111

    Article  CAS  Google Scholar 

  56. B. R, Md Motin Seikh, V. Pralong, O.I. Lebedev, V. Caignaert, The ordered double perovskite PrBaCo2O6: Synthesis, structure, and magnetism. J. Appl. Phys. 114, 1–5 (2013). https://doi.org/10.1063/1.4812368

    Article  CAS  Google Scholar 

  57. E. Iguchi, K. Ueda, W.H. Jung, Conduction in LaCoO 3 by small-polaron hopping below room temperature. Phys. Rev. B. (1996). https://doi.org/10.1103/PhysRevB.54.17431

    Article  Google Scholar 

  58. S.O. Manjunatha, A. Rao, T.Y. Lin, C.M. Chang, Y.K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35-xBaxMnO3(0 ≤ x ≤ 0.25) manganites. J. Alloys Compd. 619, 303–310 (2015). https://doi.org/10.1016/j.jallcom.2014.09.042

    Article  CAS  Google Scholar 

  59. S.P. Rao, A.K. Saw, C. Chotia, G. Okram, V. Dayal, Structural and thermoelectric properties of Mn15Si26, Mn4Si7 and MnSi2, synthesized using arc-melting method. Appl. Phys. A Mater. Sci. Process. 127, 1–6 (2021). https://doi.org/10.1007/s00339-021-04754-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by financial grants from Science and Engineering Research Board-DST (EMR/2016/005424), New Delhi, India, and UGC-DAE- Consortium for Scientific Research, Indore centre (CSR-IC/CRS-89/2014- 2019) and its support as a user facility. SPR is indebted to the Maharaja Institute of Technology and Maharaja Research Foundation® (MRF) for a Research Fellowship and necessary support for the work via the Shodhana Research Scheme. We gratefully acknowledge eminent scientists and engineers; Dr Mukul Gupta and Layanta Behera for XRD; Dr Rajeev Rawat and Mr Sachin Kumar (MTC lab) for electrical measurements, Dr V. G. Sathe and Mr Ajay Rathore for Raman spectroscopy, Dr. D M Phase and Vinay K Ahire for SEM and EDS at UGC-DAE Consortium for Scientific Research, Indore.

Funding

This work is partially supported by Science and Engineering Research Board (IN), EMR/2016/005424, Vijaylakshmi Dayal.

Author information

Authors and Affiliations

Authors

Contributions

SPR has been involved in the visualization, conceptualization, experiments, and drafting of the manuscript. AKS was involved in experimentation. CC, VPV, VCP, JD, and GO facilitated the experiments. VD has been engaged in visualization conceptualization, experiments, and writing (reviewing and editing) to improve the overall quality of the manuscript, supervision, and project administration.

Corresponding author

Correspondence to Vijaylakshmi Dayal.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.P., Saw, A.K., Chotia, C. et al. Structural, transport, and thermoelectric properties of electron beam-irradiated Bi1.2Pb0.33Sr1.54Ca2.06Co3Oy cobalties. J Mater Sci: Mater Electron 34, 548 (2023). https://doi.org/10.1007/s10854-023-09926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09926-2

Navigation