Skip to main content
Log in

Highly photoluminescence and wide band gap insulating metal hybrid nanoparticles array of samarium-doped SrO:CoO: synthesis, characterizations and sensor characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a new series of Smx (x = 1, 6 and 12 wt.%) doped SrO:CoO (1:1) nanocrystals (NCs) have been synthesized by microwave-assisted method. The as-synthesized Smx:SrO@CoO NCs were characterized by XRD (X-ray diffraction), UV–visible, SEM (scanning electron microscopy), XPS (X-ray photoelectron spectroscopy), BET (Brunauer–Emmett–Teller) and EDX (energy-dispersive X-ray) spectroscopic investigations. Irregular shaped morphology was revealed from SEM micrographs with average size of the agglomerates ~ 70 nm. XRD patterns confirmed the formation of mixed phase of monoclinic and tetragonal crystal structure. Blueshift in optical absorptivity resulted as Sm concentration increases in NCs and direct optical band gap decreases from 3.12 to 2.21 eV. Photoluminescence (PL) studies showed strong near edge ultraviolet green-yellow emissions for Sm6 wt.% and12 wt.%:SrO@CoO NCs when excited at 220, 250, 280 nm (λexcitation). Sm12 wt.%:SrO@CoO NCs showed visible range weak band emissions due to crystal defect and formation of oxygen vacancies. Raman studies of Smx:SrO@CoO showed longitudinal optical mode which confirmed the formation of oxygen vacancies. Raman spectroscopy also revealed the presence of Sm-O-Sm, Sr-O-Sr and Co-O bonds in the crystal lattice. In addition Sm6 wt.% and12 wt.%:SrO@CoO NCs showed highest sensitivity (0.10, at 94 µ-ohm and 0.082, at 253 µ-ohm), response (88.9 and 82.7), and had extremely low time parameters (response time of 12, 20 s and recovery time of 24, 44 s) towards O-xylene gas when subjected for detection of its sensitivity in presence of other volatile gases. Moreover sensor exhibited excellent repeatability and restoration. The wide band gap Smx:SrO@CoO NCs can find applications in the field of high resistive sensors, display technologies, LEDs, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. B.C. Jamalaiah, N. Venkatramaiah, T.S. Rao, S.N. Rasool, B.N. Rao, D.V.R. Ram, A.S.N. Reddy, Mater. Sci. Semicond. Process 105, 104722–104726 (2020). https://doi.org/10.1016/j.mssp.2019.104722

    Article  CAS  Google Scholar 

  2. B.C. Jamalaiah, S.N. Rasool, Mater. Today Proc. 3, 4019–4022 (2016). https://doi.org/10.1016/j.matpr.2016.11.066

    Article  Google Scholar 

  3. H. Yang, H. Wang, H.M. Luo, D.M. Feldmann, P.C. Dowden, R.F. De Paula, Q.X. Jia, Appl. Phys. Lett. 92, 062905 (2008). https://doi.org/10.1063/1.2842416

    Article  CAS  Google Scholar 

  4. A.A. Dakhel, J. Alloys & Comps. 365, 233–239 (2004). https://doi.org/10.1016/S0925-8388(03)00615-7

    Article  CAS  Google Scholar 

  5. T. Liu, Y. Zhang, H. Shao, X. Li, Langmuir 19, 7569–7572 (2003). https://doi.org/10.1021/la034350l

    Article  CAS  Google Scholar 

  6. X. Zheng, L. Song, S. Liu, T. Hu, J. Chen, X. Chen, A. Marcelli, M.F. Saleem, W. Chu, Z. Wu, New J. Chem. 39, 4972–4976 (2015). https://doi.org/10.1039/C4NJ01682C

    Article  CAS  Google Scholar 

  7. G. Blasse, B.C. Grabmaier, Luminescent materials (Springer Verlag, 1994)

    Book  Google Scholar 

  8. W.M. Yen, Sh. Shionoya, H. Yamamoto (eds.), Phosphor handbook (CRC Press, 2007)

    Google Scholar 

  9. C.K. Jayasankar, P. Babu, J. Alloy. Comp. 307, 82–95 (2000). https://doi.org/10.1016/S0925-8388(00)00888-4

    Article  CAS  Google Scholar 

  10. B.V. Padlyak, I.I. Kindrat, R. Lisiecki, V.T. Adamiv, I.M. Teslyuk, Adv. Mater. Lett. 8, 723–734 (2017). https://doi.org/10.5185/amlett.2017.1436

    Article  CAS  Google Scholar 

  11. S. Ekaphan, P. Sumalin, H. Sitchai, M. Santi, Physica B (2016). https://doi.org/10.1016/j.physb.2016.01.002

    Article  Google Scholar 

  12. V.M. Longo, M.D.G.S. Costa, A.Z. Simoes, I.L.V. Rosa, C.O.P. Santos, J. Andres, E. Longo, J.A. Varela, Phys. Chem. Chem. Phys. 12(27), 7566–7579 (2010). https://doi.org/10.1039/B923281H

    Article  CAS  Google Scholar 

  13. R.C. Prajapati, J. Sol-Gel Sci. Technol. 87(1), 41–49 (2018). https://doi.org/10.1007/s10971-018-4718-7

    Article  CAS  Google Scholar 

  14. M.M. Rahman, M.M. Hussain, A.M. Asiri, RSC Adv. 6(70), 65338–65348 (2016). https://doi.org/10.1039/C6RA11582A

    Article  CAS  Google Scholar 

  15. C.G. Pérez-Hernández, R. Sánchez-Zeferino, U. Salazar-Kuri, M.E. Álvarez-Ramos, Chem. Phys. 551, 111324 (2021). https://doi.org/10.1016/j.chemphys.2021.111324

    Article  CAS  Google Scholar 

  16. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, K. Subramanyam, S.H. Park, Physica E: Low-Dimens. Syst. Nanostruct. 83, 180–185 (2016). https://doi.org/10.1016/j.physe.2016.05.025

    Article  CAS  Google Scholar 

  17. A.M. Abdallah, R. Awad, Physica B: Condensed. Matter 608, 412898 (2021). https://doi.org/10.1016/j.physb.2021.412898

    Article  CAS  Google Scholar 

  18. A. Arabaci, Ceram Int. 41, 5836–5842 (2015). https://doi.org/10.1016/j.ceramint.2015.01.013

    Article  CAS  Google Scholar 

  19. M. Rushton, A. Chroneos, S. Skinner, J. Kilner, R. Grimes, Solid. State. Ion. 230, 37–42 (2013). https://doi.org/10.1016/j.ssi.2012.09.015

    Article  CAS  Google Scholar 

  20. S. Omar, Intech Open (2019). https://doi.org/10.5772/intechopen.79170

    Article  Google Scholar 

  21. R. Bhargava, P.K. Sharma, S. Singh, M. Sahni, A.C. Pandey, N. Kumar, J. Mater. Sci: Mater. Electron 25, 552–559 (2014). https://doi.org/10.1007/s10854-013-1623-2

    Article  CAS  Google Scholar 

  22. R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, N. Kumar, Mater. Chem. Phys. 120, 393–398 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.024

    Article  CAS  Google Scholar 

  23. L.K. Gaur, P. Kumar, D. Kushavah, K.R. Khiangte, M.C. Mathpal, V. Agrahari, S.P. Gairola, M.A.G. Soler, H.C. Swart, A. Agarwal, J. Alloy. Compd. 780, 25–34 (2019). https://doi.org/10.1016/j.jallcom.2018.11.344

    Article  CAS  Google Scholar 

  24. A.B. Djurisić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnol 18(1–8), 095702 (2007). https://doi.org/10.1088/0957-4484/18/9/095702

    Article  CAS  Google Scholar 

  25. P. Li, S. Wang, J. Li, Y. Wei, J. Lumin. 132, 220–225 (2012). https://doi.org/10.1016/j.jlumin.2011.08.019

    Article  CAS  Google Scholar 

  26. W. Zhen, W. Qi, L. Yuchao, S. Genli, G. Xuzhong, H. Ning, L. Haidi, C. Yunfa, Chem. Phys. Chem. 12, 2763 (2011). https://doi.org/10.1002/cphc.201100346

    Article  CAS  Google Scholar 

  27. V. Venkatramua, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, G. Wortmann, Opt. Mater. 29, 1429 (2007). https://doi.org/10.1016/j.optmat.2006.06.011

    Article  CAS  Google Scholar 

  28. C.S. Ciobanu, S.L. Iconaru, P.L. Coustumer, Nanoscale. Res. Lett. 7, 324 (2012). https://doi.org/10.1186/1556-276X-7-324

    Article  CAS  Google Scholar 

  29. S.S.T. Selvi, J.M. Linet, S. Sagadevan, J. Exp. Nanosci. 13(1), 130–143 (2018). https://doi.org/10.1080/17458080.2018.1445306

    Article  CAS  Google Scholar 

  30. D. Varghese, C. Tom, N.K. Chandar, IOP Conf. Ser.: Mater. Sci. Eng. 263(2), 022002 (2017). https://doi.org/10.1088/1757-899X/263/2/022002

    Article  Google Scholar 

  31. M.N. Azlan, M.K. Halimah, S.S. Hajer, A.B. Suraini, Y. Azlina, S.A. Umar, Chalcogenide Lett. 16(5), 215–229 (2019)

    CAS  Google Scholar 

  32. M.A. Ferreira, G.T. da Silva, O.F. Lopes, V.R. Mastelaro, C. Ribeiro, M.J. Pires, A.R. Malagutti, J.W. Avansi, H.A. Mourao, Mater. Sci. Semicond. Process. 108, 104887 (2020). https://doi.org/10.1016/j.mssp.2019.104887

    Article  CAS  Google Scholar 

  33. C.H. Chang, Y.H. Shen, Mater. Lett. 60(1), 129–132 (2006). https://doi.org/10.1016/j.matlet.2005.08.005

    Article  CAS  Google Scholar 

  34. M. Arora, M. Kumar, Mater. Lett. 137, 285–288 (2014). https://doi.org/10.1016/j.matlet.2014.08.140

    Article  CAS  Google Scholar 

  35. W.E. Vargas, G.A. Niklasson, Appl. Opt. 36(22), 5580–5586 (1997). https://doi.org/10.1364/AO.36.005580

    Article  CAS  Google Scholar 

  36. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y.K.Y. Kishi, Y.K.Y. Kuwano, Jpn. J. Appl. Phys. 30(5R), 1008 (1991). https://doi.org/10.1143/JJAP.30.1008

    Article  CAS  Google Scholar 

  37. O. Dimitrov, I. Stambolova, T. Babeva, K. Lazarova, G. Avdeev, M. Shipochka, R. Mladenova, S. Simeonova, J. Mater. Res. Technol. 18, 3026–3034 (2022). https://doi.org/10.1016/j.jmrt.2022.04.013

    Article  CAS  Google Scholar 

  38. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3(1), 1–6 (2013). https://doi.org/10.1186/2228-5326-3-30

    Article  CAS  Google Scholar 

  39. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Results. Phys 9, 628–635 (2018). https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  40. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, Polym. Compos. 41(7), 2792–2802 (2020). https://doi.org/10.1002/pc.25576

    Article  CAS  Google Scholar 

  41. M.M.H. Farooqi, R.K. Srivastava, Optik 127(8), 3991–3998 (2016)

    Article  CAS  Google Scholar 

  42. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, P.A. Alvi, J. Mater. Sci. 55(30), 14829–14847 (2020). https://doi.org/10.1007/s10853-020-05093-5

    Article  CAS  Google Scholar 

  43. K. Kumari, R.N. Aljawfi, Y.S. Katharria, S. Dwivedi, K.H. Chae, R. Kumar, A. Alshoaibi, P.A. Alvi, S. Dalela, S. Kumar, J. Electron Spectros. Relat. Phenomena 235, 29–39 (2019). https://doi.org/10.1016/j.elspec.2019.06.004

    Article  CAS  Google Scholar 

  44. K. Veena, S. Chandrasekhar, M.S. Raghu, K.Y. Kumar, C.P. Kumar, A.M. Alswieleh, V.A. Devi, M.K. Prashanth, B.H. Jeon, J. Molecular Struct. 1264, 133235 (2022). https://doi.org/10.1016/j.molstruc.2022.133235

    Article  CAS  Google Scholar 

  45. Z. Hu, D. Chen, S. Wang, N. Zhang, L. Qin, Y. Huang, Mater. Sci. Eng B 220, 1–12 (2017). https://doi.org/10.1016/j.mseb.2017.03.005

    Article  CAS  Google Scholar 

  46. J. Diaz-Reyes, R.S. Castillo-Ojeda, R. Sánchez-Espíndola, M. Galván-Arellano, O. Zaca-Morán, Curr. Appl. Phys. 15(2), 103 (2015)

    Article  Google Scholar 

  47. N.V. Kosova, E.T. Devyatkina, V.V. Kaichev, Russ. J. Electrochem. 45, 277–285 (2009). https://doi.org/10.1134/S1023193509030069

    Article  CAS  Google Scholar 

  48. L. Wang, J. Zhang, Q. Zhang, N. Xu, and. J. Song J. Magn. Magn. Mater. 377, 362–367 (2015). https://doi.org/10.1016/j.jmmm.2014.10.097

    Article  CAS  Google Scholar 

  49. J. Madhavi, S.N. Appl, Sci. 1, 1509 (2019). https://doi.org/10.1007/s42452-019-1291-9

    Article  CAS  Google Scholar 

  50. M. Zhang, M. De Respinis, H. Frei, Nat. Chem. 6(4), 362–367 (2014). https://doi.org/10.1038/nchem.1874

    Article  CAS  Google Scholar 

  51. J. Al-Boukhari, R.S. Hassan, R. Awad, Mater. Res. Express 6(11), 115094 (2019). https://doi.org/10.1088/2053-1591/ab4ad2

    Article  Google Scholar 

  52. Y. Hanifehpour, B. Soltani, A.R. Amani-Ghadim, B. Hedayati, B. Khomami, S.W. Joo, Mater. Res. Bull. 76, 411–421 (2016). https://doi.org/10.1016/j.materresbull.2015.12.035

    Article  CAS  Google Scholar 

  53. Y. Ma, J. Zhang, B. Tian, F. Chen, L. Wang, J. Hazard. Mater. 182(1–3), 386–393 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.045

    Article  CAS  Google Scholar 

  54. Y. Liu, L. Zong, C. Zhang, W. Liu, A. Fakhri, V.K. Gupta, Surf. Interfaces 26, 101292 (2021). https://doi.org/10.1016/j.surfin.2021.101292

    Article  CAS  Google Scholar 

  55. Y. Sun, J.B. Ketterson, G.K. Wong, Appl. Phys. Lett. 77(15), 2322–2324 (2000). https://doi.org/10.1063/1.1316069

    Article  CAS  Google Scholar 

  56. M.A. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Mater. Sci. Semicond. Process. 79, 53–60 (2018). https://doi.org/10.1016/j.mssp.2018.02.003

    Article  CAS  Google Scholar 

  57. P.S. Shewale, Y.S. Yu, J.H. Kim, C.R. Bobade, M.D. Uplane, J. Anal. Appl. Pyrol. 112, 348–356 (2015). https://doi.org/10.1016/j.jaap.2015.01.001

    Article  CAS  Google Scholar 

  58. J. Ma, H. Fan, W. Zhang, J. Sui, C. Wang, M. Zhang, N. Zhao, A. Kumar Yadav, W. Wang, W. Dong, S. Wang, Sens. Actuators B. 305, 127456 (2020). https://doi.org/10.1016/j.snb.2019.127456

    Article  CAS  Google Scholar 

  59. F. Laatar, M. Hassen, A. Smida, R. Riahi, N.B. Mohamed, H. Ezzaouia, Superlattices. Microstruct. 83, 575–587 (2015). https://doi.org/10.1016/j.spmi.2015.04.008

    Article  CAS  Google Scholar 

  60. G.U. Jingyuan, T.A. Qiang, C. Zhang, L.U. Daling, L. Xiaowei, J. Rare. Earths. 35(6), 525–529 (2017). https://doi.org/10.1016/S1002-0721(17)60943-8

    Article  Google Scholar 

  61. P. Velusamy, M. Sathiya, Y. Liu, S. Liu, R.R. Babu, M.A. Aly, E. Elangovan, H. Chang, L. Mao, R. Xing, Appl. Surf. Sci. 561, 150082 (2021). https://doi.org/10.1016/j.apsusc.2021.150082

    Article  CAS  Google Scholar 

  62. W. Lafargue-Dit-Hauret, R. Schira, C. Latouche, S. Jobic, Chem. Mater. 33(8), 2984–2992 (2021). https://doi.org/10.1021/acs.chemmater.1c00590

    Article  CAS  Google Scholar 

  63. S. Sugumaran, C.S. Bellan, Optik 185, 997–1008 (2019). https://doi.org/10.1016/j.ijleo.2019.04.036

    Article  CAS  Google Scholar 

  64. J. Sahu, S. Kumar, V.S. Vats, P.A. Alvi, B. Dalela, S. Kumar, S. Dalela, J. Lumin. 243, 118673 (2022). https://doi.org/10.1016/j.jlumin.2021.118673

    Article  CAS  Google Scholar 

  65. I.E. Kolesnikov, E.V. Afanaseva, M.A. Kurochkin, E.Y. Kolesnikov, E. Lähderanta, Physica B: Condensed Matter 624, 413456 (2022). https://doi.org/10.1016/j.jlumin.2019.116946

    Article  CAS  Google Scholar 

  66. L.P. Singh, M.N. Luwang, S.K. Srivastava, New J. Chem. 38(1), 115–121 (2014). https://doi.org/10.1039/C3NJ00759F

    Article  CAS  Google Scholar 

  67. P. Chen, F. Wang, Y. Qiao, Z. Zhang, J. Rare. Earths. 40(3), 398–405 (2022). https://doi.org/10.1016/j.jre.2021.02.006

    Article  CAS  Google Scholar 

  68. Q. Xiao, Q. Zhou, M. Li, J. Lumin. 130(6), 1092–1094 (2010). https://doi.org/10.1016/j.jlumin.2010.02.001

    Article  CAS  Google Scholar 

  69. K. Ashwini, C. Pandurangappa, K. Avinash, S. Srinivasan, E. Stefanakos, J. Lumin. 221, 117097 (2020). https://doi.org/10.1016/j.jlumin.2020.117097

    Article  CAS  Google Scholar 

  70. J. Qi, W. Zhang, R. Cao, Chem. Comm. 53(66), 9277–9280 (2017). https://doi.org/10.1039/C7CC04609J

    Article  CAS  Google Scholar 

  71. R. Madaka, V. Kanneboina, P. Agarwal, J. Mater. Sci: Mater. Electron. 28(12), 8885–8894 (2017). https://doi.org/10.1007/s10854-017-6618-y

    Article  CAS  Google Scholar 

  72. B.T. Sone, E. Manikandan, A. Gurib-Fakim, M. Maaza, J. Alloys. Compd. 650, 357–362 (2015). https://doi.org/10.1016/j.jallcom.2015.07.272

    Article  CAS  Google Scholar 

  73. S. Ekaphan, P. Sumalin, H. Sitchai, M. Santi, Physica B 485, 14–20 (2016). https://doi.org/10.1016/j.physb.2016.01.002

    Article  CAS  Google Scholar 

  74. D. Ranjith Kumar, K.S. Ranjith, L.R. Nivedita, R.T. Rajendra Kumar, J. Rare. Earths. 35(10), 1002–1007 (2017). https://doi.org/10.1016/S1002-0721(17)61005-6

    Article  Google Scholar 

  75. R. Marcin, W. Przemysław, L. Víctor, L. Stefan, Sens. Actuators B: Chem. 273, 585–591 (2018). https://doi.org/10.1016/j.snb.2018.06.089

    Article  CAS  Google Scholar 

  76. S. Swathi, R. Yuvakkumar, G. Ravi, A.G. Al-Sehemi, D. Velauthapillai, Nanoscale. Adv. 4, 2501–2508 (2022). https://doi.org/10.1039/D2NA00022A

    Article  CAS  Google Scholar 

  77. Y. Zou, J. He, Y. Hu, R. Huang, Z. Wang, Q. Gu, RSC Adv 8(30), 16897–16901 (2018). https://doi.org/10.1039/C8RA02329H

    Article  CAS  Google Scholar 

  78. A. Nandi, P. Nag, D. Panda, S. Dhar, S.M. Hossain, H. Saha, S. Majumdar, ACS Omega 4(6), 11053–11065 (2019). https://doi.org/10.1021/acsomega.9b01372

    Article  CAS  Google Scholar 

  79. L. Zhu, W. Zeng, Sens. Actuators A: Phys. 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.021

    Article  CAS  Google Scholar 

  80. Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li, C. Ling, Q. Xue, ACS Sens. 2(5), 679–686 (2017). https://doi.org/10.1021/acssensors.7b00129

    Article  CAS  Google Scholar 

  81. Q.H. Wu, J. Li, S.G. Sun, Curr. Nanosci. 6(5), 525–538 (2010). https://doi.org/10.2174/157341310797574934

    Article  CAS  Google Scholar 

  82. A. Kumar, A. Kumar, R. Chandra, Sens. Actuators B: Chem. 264, 10–19 (2018). https://doi.org/10.1016/j.snb.2018.02.164

    Article  CAS  Google Scholar 

  83. M.R. MacDonald, J.E. Bates, M.E. Fieser, J.W. Ziller, F. Furche, W.J. Evans, J. Am. Chem. Soc. 134(20), 8420–8423 (2012). https://doi.org/10.1021/ja303357w

    Article  CAS  Google Scholar 

  84. X. Wang, Y. Zhu, H. Li, J.M. Lee, Y. Tang, G. Fu, Small. Methods 6(8), 2200413 (2022). https://doi.org/10.1002/smtd.202200413

    Article  CAS  Google Scholar 

  85. H. Shao, L. Gao, K. Liang, H. Chen, Q. Ye, J. Zhang, Mater. Sci. Eng: B 277, 115571 (2022). https://doi.org/10.1016/j.mseb.2021.115571

    Article  CAS  Google Scholar 

  86. A. Mirzaei, S.S. Kim, H.W. Kim, J. Hazardous Mater. 357, 314–331 (2018). https://doi.org/10.1016/j.jhazmat.2018.06.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to centre for advanced materials technology (CMAT), MS Ramaiah Institute of Technology, Bangalore, India, Centre for Nano and Material Sciences (CNMS), Jain University for characterization of the samples and carrying out experimentation.

Funding

All authors declare that they have not received any funding from any source or institutions or organizations.

Author information

Authors and Affiliations

Authors

Contributions

VA conceived the ideas, involved in characterization of the samples, wrote paper and handled revision of the manuscript. SR conceived ideas, experiments, characterization and formulation of the results. PK and CVK involved in the experimentation, interpretation of the spectral results, partially wrote the paper and handled the revision of the manuscript.

Corresponding authors

Correspondence to Vinayak Adimule or Chandrashekar V. Kulkarni.

Ethics declarations

Conflict of interest

All the authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 783 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Keri, R., Rajendrachari, S. et al. Highly photoluminescence and wide band gap insulating metal hybrid nanoparticles array of samarium-doped SrO:CoO: synthesis, characterizations and sensor characteristics. J Mater Sci: Mater Electron 34, 442 (2023). https://doi.org/10.1007/s10854-023-09899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09899-2

Navigation