Skip to main content
Log in

Preparation of ZnCo2O4 porous nano-flower-like materials by one-step cryogenic hydrothermal method and study on their capacitive and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the porous nano-flower structures were successfully constructed on carbon cloth (CC) substrate by a simple one-step cryogenic hydrothermal method. The morphology and phase analysis showed that the synthesized product was ZnCo2O4/CC with porous flower-like structure. The photocatalytic degradation experiment results show that the degradation rates of rhodamine B (RhB), methylene blue (MB), and Congo red (CR) were 98.2%, 96.8, and 98.5%, respectively. After 20 times of recycling, the cyclic stability still reached to 97.5%, 96.5%, and 97.1%, respectively. In the experiment, we also studied the electrochemical properties of porous ZnCo2O4/CC nano-flowers. When the current density was 2 A g−1, the specific capacity of the electrode was up to 1868 F g−1. And when the current density was 3 A g−1, the capacitance retention rate was up to 99.8% after 10,000 cycles. In the experiment, the prepared porous ZnCo2O4/CC nano-flower and activated carbon (AC) were assembled as asymmetric supercapacitor devices. The maximum window voltage of the asymmetric supercapacitor is 1.6 V, and the specific capacitance is preserved 98.1% after 10,000 cycles at the current density of 2 A g−1. The main reason is the synergistic effect between binary metal oxides and the three-dimensional porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors affirm that the information/data of this research article are available inside the article.

References

  1. T. Vasylieva, O. Lyulyov, Y. Bilan, D. Streimikiene, Sustainable economic development and greenhouse gas emissions: The dynamic impact of renewable energy consumption, GDP, and corruption. Energies 12(17), 3289 (2019). https://doi.org/10.3390/en12173289

    Article  Google Scholar 

  2. Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chem Eng J. 379, 122295 (2020). https://doi.org/10.1016/j.cej.2019.122295

    Article  CAS  Google Scholar 

  3. N. Yousefi, X. Lu, M. Elimelech, N. Tufenkji, Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 14(2), 107 (2019). https://doi.org/10.1038/s41565-018-0325-6

    Article  CAS  Google Scholar 

  4. X. Qin, Z. Wang, C. Guo, R. Guo, Y. Lv, M. Li, Fulvic acid degradation in Fenton-like system with bimetallic magnetic carbon aerogel Cu-Fe@CS as catalyst: Response surface optimization, kinetic and mechanism. J. Environ. Manage. 306, 114500 (2022). https://doi.org/10.1016/j.jenvman.2022.114500

    Article  CAS  Google Scholar 

  5. S. Ding, X. Li, X. Jiang, Q. Hu, Y. Yan, Q. Zheng, D. Lin, Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochim Acta. 354, 136711 (2020). https://doi.org/10.1016/j.electacta.2020.136711

    Article  CAS  Google Scholar 

  6. X. Tang, B. Zhang, Y.H. Lui, S. Hu, Ni-Mn bimetallic oxide nanosheets as high-performance electrode materials for asymmetric supercapacitors. J. Energy Storage. 25, 100897 (2019). https://doi.org/10.1016/j.est.2019.100897

    Article  Google Scholar 

  7. Y. Zhang, S.J. Park, Au–pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J. Catal. 355, 1–10 (2017). https://doi.org/10.1016/j.jcat.2017.08.007

    Article  CAS  Google Scholar 

  8. Y. Lu, L. Wang, M. Chen, Y. Wu, G. Liu, P. Qi, M. Fu, H. Wu, Y. Tang, Rationally designed hierarchical ZnCo2O4/C core-shell nanowire arrays for high performance and stable supercapacitors. J. Alloys Compd. 876, 160037 (2021). https://doi.org/10.1016/j.jallcom.2021.160037

    Article  CAS  Google Scholar 

  9. M. Sharma, A. Gaur, Electrochemical performance of rGO@ ZnCo2O4 microspheres: rationally designed asymmetric constructed wide-potential energy storage device. J. Electrochem. Soc. 168(7), 070549 (2021). https://doi.org/10.1149/1945-7111/ac15b8

    Article  CAS  Google Scholar 

  10. I.K. Moon, S. Yoon, B. Ki, K. Choi, J. Oh, Remarkable enhancement of electrochemical performance by the oxygen vacancy and nitrogen doping in ZnCo2O4 nanowire arrays. ACS Appl. Energy Mater. 1(9), 4804–4813 (2018). https://doi.org/10.1021/acsaem.8b00892

    Article  CAS  Google Scholar 

  11. H. Chen, J. Wang, X. Han, F. Liao, Y. Zhang, L. Gao, C. Xu, Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceram Int. 45(7), 8577–8584 (2019). https://doi.org/10.1016/j.ceramint.2019.01.176

    Article  CAS  Google Scholar 

  12. K. Goswami, R. Ananthakrishnan, S. Mandal, Facile synthesis of cation doped ZnO-ZnCo2O4 hetero-nanocomposites for photocatalytic decomposition of aqueous organics under visible light. Mater. Chem. Phys. 206, 174–185 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.014

    Article  CAS  Google Scholar 

  13. P. Nagajyoyhi, K. Devarayapalli, T. Sreekanth, S.P. Vattikuti, J. Shim, Effective catalytic degradation of rhodamine B using ZnCO2O4 nanodice. Mater Res Express. 6(10), 105069 (2019). https://doi.org/10.1088/2053-1591/ab3bbf

    Article  CAS  Google Scholar 

  14. W. Liu, S. Hu, Y. Wang, B. Zhang, R. Jin, L. Hu, Anchoring plasmonic Ag@AgCl nanocrystals onto ZnCO2O4 microspheres with enhanced visible photocatalytic activity. Nanoscale Res. Lett. 14(1), 1–10 (2019). https://doi.org/10.1186/s11671-019-2922-1

    Article  CAS  Google Scholar 

  15. Y. Yan, M. Shi, Y. Wei, C. Zhao, M. Carnie, R. Yang, Y. Xu, Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries. J. Alloys Compd. 738, 16–24 (2018). https://doi.org/10.1016/j.jallcom.2017.11.212

    Article  CAS  Google Scholar 

  16. B. Mandal, P. Roy, P. Mitra, Comparative study on organic effluent degradation capabilities and electrical transport properties of polygonal ZnCo2O4 spinels fabricated using different green fuels. Mater. Sci. Eng. C. 117, 111304 (2020). https://doi.org/10.1016/j.msec.2020.111304

    Article  CAS  Google Scholar 

  17. A.A. Shah, A.D. Chandio, A.A. Sheikh, Boron doped ZnO nanostructures for photo degradation of methylene blue, methyl orange and rhodamine B. J. Nanosci. Nanotechnol. 21(4), 2483–2494 (2021). https://doi.org/10.1166/jnn.2021.19315

    Article  CAS  Google Scholar 

  18. K.A. Sultana, M.T. Islam, J.A. Silva, R.S. Turley, J.A. Hernandez-Viezcas, J.L. Gardea-Torresdey, J.C. Noveron, Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical. J. Mol. Liq. 307, 112931 (2020). https://doi.org/10.1016/j.molliq.2020.112931

    Article  CAS  Google Scholar 

  19. N. Kitchamsetti, D. Narsimulu, A. Chinthakuntla, C.S. Chakra, A.L. de Barros, Bimetallic MOF derived ZnCo2O4 nanocages as a novel class of high performance photocatalyst for the removal of organic pollutants. Inorg Chem Commun. 144, 109946 (2022). https://doi.org/10.1016/j.inoche.2022.109946

    Article  CAS  Google Scholar 

  20. X. Liu, Q. Zhong, W. Guo, W. Zhang, Y. Ya, Y. Xia, Novel Platycladus orientalis–shaped Fe-doped ZnO hierarchical nanoflower decorated with Ag nanoparticles for photocatalytic application. J. Alloys Compd. 880, 160501 (2021). https://doi.org/10.1016/j.jallcom.2021.160501

    Article  CAS  Google Scholar 

  21. G. Zhang, Y. Liu, Z. Hashisho, Z. Sun, S. Zheng, L. Zhong, Adsorption and photocatalytic degradation performances of TiO2/diatomite composite for volatile organic compounds: Effects of key parameters. Appl. Surf. Sci 525, 146633 (2020). https://doi.org/10.1016/j.apsusc.2020.146633

    Article  CAS  Google Scholar 

  22. B. Tan, Y. Fang, Q. Chen, X. Ao, Y. Cao, Preparation of a CaFe2O4/ZnCo2O4 composite material and its photocatalytic degradation of tetracycline. Opt Mater. 109, 110470 (2020). https://doi.org/10.1016/j.optmat.2020.110470

    Article  CAS  Google Scholar 

  23. Y. Gao, S. Cong, H. Yu, D. Zou, Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process. Sep Purif Technol. 262, 118330 (2021). https://doi.org/10.1016/j.seppur.2021.118330

    Article  CAS  Google Scholar 

  24. R. Behnood, G. Sodeifian, Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst. J. Photoch. Photobio. A 405, 112971 (2021). https://doi.org/10.1016/j.jphotochem.2020.112971

    Article  CAS  Google Scholar 

  25. S. Hemamalini, R. Manimekalai, Synthesis, physicochemical and photocatalytic activities of nano ZnCo2O4 catalyst for photodegradation of various dyes under sunlight irradiation. Bull Mater Sci. 44(2), 1–10 (2021). https://doi.org/10.1007/s12034-021-02453-y

    Article  CAS  Google Scholar 

  26. R. Rajendran, S. Vignesh, A. Sasireka, S. Suganthi, V. Raj, P. Baskaran, M. Shkir, S. AlFaify, Designing Ag2O modified g-C3N4/TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight. Colloid Surf. A 629, 127472 (2021). https://doi.org/10.1016/j.colsurfa.2021.127472

    Article  CAS  Google Scholar 

  27. Y. Duan, C. Wang, J. Hao, Y. Jiao, Y. Xu, J. Wang, Electrochromic performance and capacitor performance of α-MoO3 nanorods fabricated by a one-step procedure. Coatings 11(7), 783 (2021). https://doi.org/10.3390/coatings11070783

    Article  CAS  Google Scholar 

  28. T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/C9EE03634B

    Article  CAS  Google Scholar 

  29. J. Wang, S. Wang, J. Chang, X. Jin, One pot preparation of CoMoO4 nanowires covered by CoMoO4 nanosheets for application in asymmetric supercapacitors. J. Mater. Sci. Mater. 31(23), 20899–20907 (2020). https://doi.org/10.1007/s10854-020-04604-z

    Article  CAS  Google Scholar 

  30. H. Cao, X. Zhou, W. Deng, Z. Ma, Y. Liu, Z. Liu, Layer structured graphene/porous ZnCo2O4 composite film for high performance flexible lithium-ion batteries. Chem. Eng. J. 343, 654–661 (2018). https://doi.org/10.1016/j.cej.2018.03.001

    Article  CAS  Google Scholar 

  31. H. Xuan, H. Li, J. Gao, Y. Guan, Z. Xie, X. Liang, H. Li, P. Han, Y. Wu, Construction of hierarchical core-shell ZnCo2O4@Ni-Co-S nanosheets with a microsphere structure on nickel foam for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 513, 145893 (2020). https://doi.org/10.1016/j.apsusc.2020.145893

    Article  CAS  Google Scholar 

  32. J. Qi, J. Mao, A. Zhang, L. Jiang, Y. Sui, Y. He, Q. Meng, F. Wei, X. Zhang, Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. J. Mater. Sci. 53(23), 16074–16085 (2018). https://doi.org/10.1007/s10853-018-2757-7

    Article  CAS  Google Scholar 

  33. Z. Wu, X. Yang, H. Gao, H. Shen, H. Wu, X. Xia, X. Wu, W. Lei, J. Yang, Q. Hao, Controllable synthesis of ZnCo2O4@NiCo2O4 heterostructures on Ni foam for hybrid supercapacitors with superior performance. J. Alloys Compd. 891, 162053 (2022). https://doi.org/10.1016/j.jallcom.2021.162053

    Article  CAS  Google Scholar 

  34. M.S. Javed, I. Hussain, S. Batool, S.H. Siyal, T. Najam, S.S.A. Shah, M. Imran, M.A. Assiri, S. Hussain, Energy storage properties of hydrothermally processed ultrathin 2D binder-free ZnCo2O4 nanosheets. Nanotechnology 32(38), 385402 (2021). https://doi.org/10.1088/1361-6528/ac0c42

    Article  CAS  Google Scholar 

  35. C. Du, E. Han, L. Sun, S. Qiao, L. Li, Template agent for assisting in the synthesis of ZnCo2O4 on Ni foam for high-performance supercapacitors. Ionics 26(1), 383–391 (2020). https://doi.org/10.1007/s11581-019-03189-w

    Article  CAS  Google Scholar 

  36. Z. Zhang, X. Zhang, Y. Feng, X. Wang, Q. Sun, D. Yu, W. Tong, X. Zhao, X. Liu, Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim. Acta 260, 823–829 (2018). https://doi.org/10.1016/j.electacta.2017.12.047

    Article  CAS  Google Scholar 

  37. X. Han, Y. Yang, J.J. Zhou, Q. Ma, K. Tao, L. Han, Metal-organic framework templated 3D hierarchical ZnCo2O4@Ni(OH)2 core-shell nanosheet arrays for high-performance supercapacitors. Chem. Eur. J. 24(68), 18106–18114 (2018). https://doi.org/10.1002/chem.201804327

    Article  CAS  Google Scholar 

  38. J. Zhu, Y. Wang, X. Zhang, W. Cai, MOF-derived ZnCo2O4@NiCo2S4@PPy core–shell nanosheets on Ni foam for high-performance supercapacitors. Nanotechnology 32(14), 145404 (2021). https://doi.org/10.1088/1361-6528/abd20b

    Article  CAS  Google Scholar 

  39. V.S. Kumbhar, D.H. Kim, Hierarchical coating of MnO2 nanosheets on ZnCo2O4 nanoflakes for enhanced electrochemical performance of asymmetric supercapacitors. Electrochim. Acta 271, 284–296 (2018). https://doi.org/10.1016/j.electacta.2018.03.147

    Article  CAS  Google Scholar 

  40. Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A. 6(4), 1513–1522 (2018). https://doi.org/10.1039/C7TA07951F

    Article  CAS  Google Scholar 

  41. J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, J. Hao, H. Qu, J. Zhao, 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19, 222–233 (2016). https://doi.org/10.1016/j.nanoen.2015.10.036

    Article  CAS  Google Scholar 

  42. D. Yu, Y. Teng, X. Liu, X. Liu, A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device. Electrochim. Acta 347, 136278 (2020). https://doi.org/10.1016/j.electacta.2020.136278

    Article  CAS  Google Scholar 

  43. H. Wang, W. Cai, L. He, M. Zhu, Y. Wang, Anchoring ternary NiCoMn-S ultrathin nanosheets on porous ZnCo2O4 nanowires to form core-shell composites for high-performance asymmetric supercapacitor. J. Alloys Compd. 870, 159347 (2021). https://doi.org/10.1016/j.jallcom.2021.159347

    Article  CAS  Google Scholar 

  44. D. Yu, Y. Teng, H. Qi, X. Liu, Y. Wu, X. Zhao, X. Liu, Coating of the NiMoO4 nanosheets on different-morphology ZnCo2O4 nanoarrays on Ni foam and their application in battery-supercapacitor hybrid devices. J. Energy Storage. 29, 101195 (2020). https://doi.org/10.1016/j.est.2020.101195

    Article  Google Scholar 

  45. H. Li, L. Wang, Y. Guan, Y. Su, J. Mu, H. Che, A. Liu, Z. Guo, Facile solvothermal synthesis of ZnCo2O4/MnO2 nanosheets composite with enhanced electrochemical properties as supercapacitor electrodes. Appl. Phys. A 124(7), 1–10 (2018). https://doi.org/10.1007/s00339-018-1894-9

    Article  CAS  Google Scholar 

  46. J.A. Rajesh, K.S. Ahn, Facile hydrothermal synthesis and supercapacitor performance of mesoporous necklace-type ZnCo2O4 nanowires. Catalysts 11(12), 1516 (2021). https://doi.org/10.3390/catal11121516

    Article  CAS  Google Scholar 

  47. L. Wu, L. Sun, X. Li, Q. Zhang, H. Si, Y. Zhang, K. Wang, Y. Zhang, Mesoporous ZnCo2O4-CNT microflowers as bifunctional material for supercapacitive and lithium energy storage. Appl. Surf. Sci. 506, 144964 (2020). https://doi.org/10.1016/j.apsusc.2019.144964

    Article  CAS  Google Scholar 

  48. S. Patil, D. Dubal, D. Lee, Gold nanoparticles decorated rGO-ZnCo2O4 nanocomposite: a promising positive electrode for high performance hybrid supercapacitors. Chem. Eng. J. 379, 122211 (2020). https://doi.org/10.1016/j.cej.2019.122211

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the Young scientific research item of Harbin university of commerce (18XN034), the National Natural Science Foundation of China (No. 52002099), and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2022-K74).

Author information

Authors and Affiliations

Authors

Contributions

JW and GW explored the whole research ideas and wrote the paper. JW and YW carried out the synthesis and experiments. GW and JH provided the guidance for the research process. SW proposed the idea and revised the manuscript. All the authors participated in this research project.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, G., Wang, Y. et al. Preparation of ZnCo2O4 porous nano-flower-like materials by one-step cryogenic hydrothermal method and study on their capacitive and photocatalytic properties. J Mater Sci: Mater Electron 34, 531 (2023). https://doi.org/10.1007/s10854-023-09896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09896-5

Navigation