Skip to main content
Log in

Visualization analysis of glucose, lactate and cholesterol based on an electrochemiluminescent biosensor array

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, three specialized oxidases for glucose, lactate and cholesterol are absorbed on carbon microspheres (CSs), which can produce hydrogen peroxide during their substrate-specific enzymatic activity. Electrochemiluminescent (ECL) is generated by the electrochemical reaction between luminol and hydrogen peroxide on an ECL biosensor array, whose light signals are collected by a CCD camera. Under optimum conditions, calibration curves are constructed for glucose, lactate, cholesterol concentrations and ECL intensities. The detection limits of the different biosensors are found to be 12 μM for glucose, 3 μM for lactate and 19 μM for cholesterol. Furthermore, the resulting ECL biosensor array is expected to be an alternative analytical tool in clinical analysis because of its good stability, acceptable precision and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. M. Thapa, R. Sung, Y.S. Heo, Biosensors 11, 507 (2021). https://doi.org/10.3390/bios11120507

    Article  CAS  Google Scholar 

  2. Z. Zhou, L. Xu, S. Wu, B. Su, Analyst 139, 4934–4939 (2014). https://doi.org/10.1039/c4an00687a

    Article  CAS  Google Scholar 

  3. Y. Yao, J. Chen, Y. Guo, T. Lv, Z. Chen, N. Li, S. Cao, B. Chen, T. Chen, Biosens. Bioelectron. 179, 113078 (2021). https://doi.org/10.1016/j.bios.2021.113078

    Article  CAS  Google Scholar 

  4. H. Chen, X. Tan, J. Zhang, Q. Lu, X. Ou, Y. Ruo, S. Chen, RSC Adv. 4, 61759–61766 (2014). https://doi.org/10.1039/c4ra09616a

    Article  CAS  Google Scholar 

  5. Y. Yao, H. Li, D. Wang, C. Liu, C. Zhang, Analyst 142, 3715–3724 (2017). https://doi.org/10.1039/c7an01008g

    Article  CAS  Google Scholar 

  6. M. Budiyanto, A.R. Purnomo, W.B. Sabtiawan, Suhariningsih, M. Yasin, J. Phys. Conf. Ser. 1417, 012005 (2019). https://doi.org/10.1088/1742-6596/1417/1/012005

    Article  CAS  Google Scholar 

  7. J. Luo, H. Yang, B.L. Song, Nat. Rev. Mol. Cell. Biol. 21, 225–245 (2020). https://doi.org/10.1038/s41580-019-0190-7

    Article  CAS  Google Scholar 

  8. A.A. Abdul-Hamead, F.M. Othman, M.A. Fakhri, J. Mater. Sci. Mater. Electron. 32, 15523–15532 (2021). https://doi.org/10.1007/s10854-021-06102-2

    Article  CAS  Google Scholar 

  9. X. Chen, B. Su, X. Song, Q. Chen, X. Chen, X. Wang, TrAC Trends Anal. Chem. 30, 665–676 (2011). https://doi.org/10.1016/j.trac.2010.12.004

    Article  CAS  Google Scholar 

  10. Q. Wang, S. Liu, Z. Tang, J. Mater. Chem. B 9, 8174–8184 (2021). https://doi.org/10.1039/d1tb01521d

    Article  CAS  Google Scholar 

  11. S. Kurbanoglu, C. Erkmen, B. Uslu, TrAC Trends Anal. Chem. 124, 115809 (2020). https://doi.org/10.1016/j.trac.2020.115809

    Article  CAS  Google Scholar 

  12. Q. Cao, B. Liang, C. Yu, L. Fang, T. Tu, J. Wei, X. Ye, J. Electroanal. Chem. 873, 114358 (2020). https://doi.org/10.1016/j.jelechem.2020.114358

    Article  CAS  Google Scholar 

  13. M. Besharati, M.A. Tabrizi, F. Molaabasi, R. Saber, M. Shamsipur, J. Hamedi, S. Hosseinkhani, Biotechnol. Appl. Biochem. 69, 41–50 (2022). https://doi.org/10.1002/bab.2078

    Article  CAS  Google Scholar 

  14. M. Wang, F. Liu, D. Chen, J. Mater. Sci.-Mater. Electron. 32, 23445–23456 (2021). https://doi.org/10.1007/s10854-021-06832-3

    Article  CAS  Google Scholar 

  15. M. Bonet-San-Emeterio, N. Felipe Montiel, M. Del Valle, Nanomaterials 11, 2094 (2021). https://doi.org/10.3390/nano11082094

    Article  CAS  Google Scholar 

  16. D. Wang, C. Liu, Y. Liang, Y. Su, Q. Shang, C. Zhang, J. Electrochem. Soc. 165, B361–B369 (2018). https://doi.org/10.1149/2.0551809jes

    Article  CAS  Google Scholar 

  17. X. Ma, W. Gao, F. Du, F. Yuan, J. Yu, Y. Guan, N. Sojic, G. Xu, Acc. Chem. Res. 54, 2936–2945 (2021). https://doi.org/10.1021/acs.accounts.1c00230

    Article  CAS  Google Scholar 

  18. Y. Zhao, L. Bouffier, G. Xu, G. Loget, N. Sojic, Chem. Sci. 13, 2528–2550 (2022). https://doi.org/10.1039/d1sc06987j

    Article  CAS  Google Scholar 

  19. Q. Han, C. Wang, Z. Li, J. Wu, P.K. Liu, F. Mo, Y. Fu, Anal. Chem. 92, 3324–3331 (2020). https://doi.org/10.1021/acs.analchem.9b05262

    Article  CAS  Google Scholar 

  20. N. Liao, J.L. Liu, Y.Q. Chai, R. Yuan, Y. Zhuo, Anal. Chem. 92, 3940–3948 (2020). https://doi.org/10.1021/acs.analchem.9b05433

    Article  CAS  Google Scholar 

  21. M.M. Chen, C.H. Xu, W. Zhao, H.Y. Chen, J.J. Xu, Angew. Chem. Int. Ed. 61, e202117401 (2022). https://doi.org/10.1002/anie.202117401

    Article  CAS  Google Scholar 

  22. R. Yang, Y. Liu, H. Ye, B. Qiu, Z. Lin, L. Guo, Electroanalysis 28, 1783–1786 (2016). https://doi.org/10.1002/elan.201600125

    Article  CAS  Google Scholar 

  23. C. Ma, Y. Cao, X. Gou, J.J. Zhu, Anal. Chem. 92, 431–454 (2020). https://doi.org/10.1021/acs.analchem.9b04947

    Article  CAS  Google Scholar 

  24. T.H. Fereja, F. Du, C. Wang, D. Snizhko, Y. Guan, G. Xu, J. Anal. Test. 4, 76–91 (2020). https://doi.org/10.1007/s41664-020-00128-x

    Article  Google Scholar 

  25. Y. Xiao, L. Xu, L.W. Qi, Talanta 165, 577–583 (2017). https://doi.org/10.1016/j.talanta.2017.01.019

    Article  CAS  Google Scholar 

  26. T. Chen, L. Pan, T. Lu, C. Fu, D.H.C. Chua, Z. Sun, J. Mater. Chem. A 2, 1263–1267 (2014). https://doi.org/10.1039/c3ta14037g

    Article  CAS  Google Scholar 

  27. L. Guo, S. Chen, Y.L. Yu, J.H. Wang, Anal. Chem. 93, 16240–16247 (2021). https://doi.org/10.1021/acs.analchem.1c04126

    Article  CAS  Google Scholar 

  28. C. Yang, N. Gao, Y. Liu, H. Zhao, J. Jing, X. Zhang, New J. Chem. 45, 19515–19520 (2021). https://doi.org/10.1039/D1NJ03826E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Anhui Provincial Natural Science Foundation (Grants No. 2008085QB68), Natural Science Foundation of Anhui Provincial Department of Education (No. KJ2021A0521) and National Undergraduate Innovation and Entrepreneurship Training Program (Grants No. 202010373008, 202010373022 and 202110373006).

Author information

Authors and Affiliations

Authors

Contributions

JC: Methodology, Investigation, Data Curation. FD & ZH: Conceptualization, Methodology, Writing-Original Draft. HL: Investigation. HG: Data Curation, Visualization. GL: Validation, Resources, Supervision.

Corresponding author

Correspondence to Gen Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 463 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Dai, F., Liu, H. et al. Visualization analysis of glucose, lactate and cholesterol based on an electrochemiluminescent biosensor array. J Mater Sci: Mater Electron 34, 415 (2023). https://doi.org/10.1007/s10854-023-09852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09852-3

Navigation