Skip to main content
Log in

Forming-free RRAM device based on HfO2 thin film for non-volatile memory application using E-beam evaporation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper studies the deposition of Hafnium Oxide (HfO2) thin films (TF) based on forming-free resistive random access memory (RRAM) devices using the method of electron beam evaporation. X-ray diffraction (XRD) analysis confirmed the amorphous nature of the deposited TF. The cross-sectional Field Emission Gun Scanning Electron Microscope (FEG-SEM) image of HfO2 TF shows a growth of ~ 134 nm thickness. Moreover, Energy-Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) determine the purity and chemical states of the sample, respectively. XPS also demonstrated the presence of oxygen vacancies in HfO2 TF responsible for enhanced resistive switching. HfO2 TF device exhibited forming-free resistive switching characteristics with stable retention of > 103 s and good endurance up to 1500 cycles at the reading voltage of + 1.4 V. The current–voltage (IV) linear fitting reveals that in the charge transmission mechanism, Space Charge-Limited Current (SCLC) behaviour and Ohmic conduction dominate in the High Resistance State (HRS) and Low Resistance State (LRS), respectively. In addition, the device also recorded an excellent OFF/ON ratio (resistance window) in the order of ~ 102, which makes it a promising candidate for resistive switching non-volatile memory application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This article contains the data that supports the findings of the study.

References

  1. L. Zhu, J. Zhou, Z. Guo, Z. Sun, J. Materiomics 1, 285 (2015)

    Article  Google Scholar 

  2. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13 (2013)

    Article  CAS  Google Scholar 

  3. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T.-Y. Tseng, IEEE Electron. Device Lett. 28, 366 (2007)

    Article  CAS  Google Scholar 

  4. Q. Mao, Z. Ji, J. Xi, J. Phys. D: Appl. Phys. 43, 395104 (2010)

    Article  Google Scholar 

  5. H.J. Wan, P. Zhou, L. Ye, Y.Y. Lin, T.A. Tang, H.M. Wu, M.H. Chi, IEEE Electron. Device Lett. 31, 246 (2010)

    Article  CAS  Google Scholar 

  6. S. Yu, X. Guan, H.S.P. Wong, In 2012 International electron devices meeting (IEEE, San Francisco, CA, USA, 2012), p.26.1.1-26.1.4

    Google Scholar 

  7. Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, C.W. Chen, W.P. Lin, W.H. Liu, Y.Y. Hsu, S.S. Sheu, P.C. Chiang, W.S. Chen, F.T. Chen, C.H. Lien, M.-J. Tsai, 2009 IEEE international electron devices meeting (IEDM) (IEEE, Baltimore, MD, USA, 2009), pp.1–4

    Google Scholar 

  8. L. Wu, H. Liu, J. Li, S. Wang, X. Wang, Nanoscale Res. Lett. 14, 177 (2019)

    Article  Google Scholar 

  9. E. Hildebrandt, J. Kurian, M.M. Müller, T. Schroeder, H.-J. Kleebe, L. Alff, Appl. Phys. Lett. 99, 112902 (2011)

    Article  Google Scholar 

  10. Z. Wang, H. Yu, X.A. Tran, Z. Fang, J. Wang, H. Su, Phys. Rev. B 85, 195322 (2012)

    Article  Google Scholar 

  11. X. Cartoixà, R. Rurali, J. Suñé, Phys. Rev. B 86, 165445 (2012)

    Article  Google Scholar 

  12. C. Hermes, R. Bruchhaus, R. Waser, IEEE Electron. Device Lett. 32, 1588 (2011)

    Article  CAS  Google Scholar 

  13. Z. Fang, H.Y. Yu, X. Li, N. Singh, G.Q. Lo, D.L. Kwong, IEEE Electron. Device Lett. 32, 566 (2011)

    Article  CAS  Google Scholar 

  14. Y. Shuai, X. Ou, W. Luo, A. Mücklich, D. Bürger, S. Zhou, C. Wu, Y. Chen, W. Zhang, M. Helm, T. Mikolajick, O.G. Schmidt, H. Schmidt, Sci. Rep. 3, 2208 (2013)

    Article  Google Scholar 

  15. B.J. Choi, A.B.K. Chen, X. Yang, I.-W. Chen, Adv. Mater. n/a (2011)

  16. Y.-S. Chen, T.-Y. Wu, P.-J. Tzeng, P.-S. Chen, H.-Y. Lee, C.-H. Lin, F. Chen, M.-J. Tsai, in 2009 International symposium on VLSI technology, systems, and applications (IEEE, Hsinchu, Taiwan, 2009), pp. 37–38

  17. S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, L. Alff, Appl. Phys. Lett. 104, 063502 (2014)

    Article  Google Scholar 

  18. M.F. Al-Kuhaili, S.M.A. Durrani, E.E. Khawaja, J. Phys. D: Appl. Phys. 37, 1254 (2004)

    Article  CAS  Google Scholar 

  19. G. He, L.Q. Zhu, M. Liu, Q. Fang, L.D. Zhang, Appl. Surf. Sci. 253, 3413 (2007)

    Article  CAS  Google Scholar 

  20. J. Ni, Z. Li, Z. Zhang, Front. Mater. Sci. China 2, 381 (2008)

    Article  Google Scholar 

  21. M. Ramzan, A.M. Rana, E. Ahmed, M.F. Wasiq, A.S. Bhatti, M. Hafeez, A. Ali, M.Y. Nadeem, Mater. Sci. Semiconduct. Process 32, 22 (2015)

    Article  CAS  Google Scholar 

  22. P. Kondaiah, H. Shaik, G. Mohan Rao, Electron. Mater. Lett. 11, 592 (2015)

    Article  CAS  Google Scholar 

  23. J.M. Khoshman, A. Khan, M.E. Kordesch, Surf. Coat. Technol. 202, 2500 (2008)

    Article  CAS  Google Scholar 

  24. G.S.R. Mullapudi, G.A. Velazquez-Nevarez, C. Avila-Avendano, J.A. Torres-Ochoa, M.A. Quevedo-López, R. Ramírez-Bon, ACS Appl. Electron. Mater. 1, 1003 (2019)

    Article  CAS  Google Scholar 

  25. N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, S.S. Ray, J.C. Ngila, Sci. Rep. 7, 9351 (2017)

    Article  Google Scholar 

  26. C.-F. Liu, X.-G. Tang, X.-B. Guo, Q.-X. Liu, Y.-P. Jiang, Z.-H. Tang, W.-H. Li, Mater. Des. 7 (2020)

  27. G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu, Q. Xu, Sci. Rep. 6, 36953 (2016)

    Article  CAS  Google Scholar 

  28. M. Khalid Rahmani, S. Ali Khan, M. Farooq Khan, M. Hee Kang, Mater. Sci. Eng.: B 282, 115784 (2022)

    Article  CAS  Google Scholar 

  29. F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)

    Article  CAS  Google Scholar 

  30. R. Jiang, Z. Wu, X. Du, Z. Han, W. Sun, Appl. Phys. Lett. 107, 013502 (2015)

    Article  Google Scholar 

  31. X. Shen, H. Gao, Y. Duan, Y. Sun, J. Guo, Z. Yu, S. Wu, X. Ma, Y. Yang, Appl. Phys. Lett. 118, 183503 (2021)

    Article  CAS  Google Scholar 

  32. B. Guo, B. Sun, W. Hou, Y. Chen, S. Zhu, S. Mao, L. Zheng, M. Lei, B. Li, G. Fu, RSC Adv. 9, 12436 (2019)

    Article  CAS  Google Scholar 

  33. M. Wang, H. Lv, Q. Liu, Y. Li, Z. Xu, S. Long, H. Xie, K. Zhang, X. Liu, H. Sun, X. Yang, M. Liu, IEEE Electron. Device Lett. 33, 1556 (2012)

    Article  CAS  Google Scholar 

  34. S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, H.-S. Philip Wong, Nat. Commun. 6, 8407 (2015)

    Article  Google Scholar 

  35. H. Zhou, G.-J. Fang, Y. Zhu, N. Liu, M. Li, X.-Z. Zhao, J. Phys. D: Appl. Phys. 44, 445101 (2011)

    Article  Google Scholar 

  36. R. Rajkumari, C. Ngangbam, N.K. Singh, J. Mater. Sci: Mater. Electron. 32, 3191 (2021)

    CAS  Google Scholar 

  37. X. Ding, Y. Feng, P. Huang, L. Liu, J. Kang, Nanoscale Res. Lett. 14, 157 (2019)

    Article  Google Scholar 

  38. L. Wu, H. Liu, J. Lin, S. Wang, Nanomaterials 10, 457 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge NIT Durgapur for FEG-SEM image, NIT Nagaland for financial support, Dr. Biraj Shougaijam, Assistant Professor, ECE Department, MTU Manipur for device deposition, and BARC Mumbai for XPS analysis.

Author information

Authors and Affiliations

Authors

Contributions

BM and PNM did the preliminary literature review. BM, PNM, and NKS did the deposition, XRD, SEM, and EDS characterization and analysis of the results. AKD did the XPS characterization. Finally, the manuscript was prepared by BM and NKS. All the authors read and approved the finalized manuscript.

Corresponding author

Correspondence to Naorem Khelchand Singh.

Ethics declarations

Conflict of interest

The authors declare that there were no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moirangthem, B., Meitei, P.N., Debnath, A.K. et al. Forming-free RRAM device based on HfO2 thin film for non-volatile memory application using E-beam evaporation method. J Mater Sci: Mater Electron 34, 306 (2023). https://doi.org/10.1007/s10854-022-09809-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09809-y

Navigation