Skip to main content

Advertisement

Log in

Thermoelectric properties of boron nitride aerogels/PEDOT: PSS composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron Nitride Aerogels/PEDOT: PSS composite film with good thermoelectric properties were prepared by a simple preparation process. Boron nitride aerogels with a width of less than 1 μm and thickness of approximately 15 nm were prepared by a combination of freeze-drying and high-temperature tubular furnace heating. Then, boron nitride aerogels material was impregnated in a certain amount of 3, 4-ethylenedioxythiophene monomer polymer: polystyrene sulfonate (PEDOT: PSS) solution by ultrasonic vibration and magnetic stirring to produce a composite film. The output voltage of the flexible Boron Nitride Aerogels/PEDOT: PSS/Au piezoelectric sensor increases with an increase in the bending angle. When the bending angle is greater than 90°, the output voltage reaches 4.03 V. For the sake of broaden the application prospect of nanocomposite films, flexible wearable thermoelectric devices were prepared. Using the human body as a heat source, the output voltage of flexible thin-film thermoelectric devices can reach 233.6 mV. According to the formula calculation, the Seebeck coefficient is 18.54 mV/K and the thermoelectric power factor is 28.86 μW/mK2. With improvements in the energy collection capacity of wearable energy devices, we believe that more work will be done in the future to realize the coordinated development of functionality, comfort and health on the basis of improving energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006). https://doi.org/10.1557/mrs2006.44

    Article  Google Scholar 

  2. W. Lei, D. Wang, G. Zhu, J. Li, F. Pan, Thermoelectric properties of conducting polyaniline/graphite composites. Mater. Lett. 65, 1086–1088 (2011). https://doi.org/10.1016/j.matlet.2011.01.014

    Article  CAS  Google Scholar 

  3. E.S. Toberer, A.F. May, G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials†‡. Chem. Mater. 22, 624–634 (2010). https://doi.org/10.1021/cm901956r

    Article  CAS  Google Scholar 

  4. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  5. J. Li, Q. Tan, J.F. Li, D.W. Liu, F. Li, Z.Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013). https://doi.org/10.1002/adfm.201300146

    Article  CAS  Google Scholar 

  6. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  7. G.S. Hegde, A.N. Prabhu, Y.H. Gao, Y.K. Kuo, V.R. Reddy, Potential thermoelectric materials of indium and tellurium co-doped bismuth selenide single crystals grown by melt growth technique. J. Alloys Compd. 866, 158814 (2021). https://doi.org/10.1016/j.jallcom.2021.158814

    Article  CAS  Google Scholar 

  8. Z.N. Kayani, Z. Bashir, M. Mohsin, S. Riaz, S. Naseem, Sol-gel synthesized boron nitride (BN) thin films for antibacterial and magnetic applications. Optik 243, 167502 (2021). https://doi.org/10.1016/j.ijleo.2021.167502

    Article  CAS  Google Scholar 

  9. J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang, X. Hu, Y. Bando, W. Lei, Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6, 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b

    Article  CAS  Google Scholar 

  10. R.Y. Tay, X. Wang, S.H. Tsang, G.C. Loh, R.S. Singh, H. Li, G. Mallick, E.H.T. Teo, A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. J. Mater. Chem. C 2, 1650–1657 (2014). https://doi.org/10.1039/c3tc32011a

    Article  CAS  Google Scholar 

  11. K. Behera, M. Kumari, Y.H. Chang, F.C. Chiu, Chitosan/boron nitride nanobiocomposite films with improved properties for active food packaging applications. Int. J. Biol. Macromol. 186, 135–144 (2021). https://doi.org/10.1016/j.ijbiomac.2021.07.022

    Article  CAS  Google Scholar 

  12. Y. Fang, I.S. Merenkov, X. Li, J. Xu, S. Lin, M.L. Kosinova, X. Wang, Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. J. Mater. Chem. A 8, 1–7 (2020). https://doi.org/10.1039/D0TA04593D

    Article  CAS  Google Scholar 

  13. T. Wang, D. Ou, H. Liu, S. Jiang, W. Huang, X. Fang, X. Chen, M. Lu, Thermally conductive boron nitride nanosheet composite paper as a flexible printed circuit board. ACS Appl. Nano Mater. 1, 1705–1712 (2018). https://doi.org/10.1021/acsanm.8b00160

    Article  CAS  Google Scholar 

  14. T. Lan, W. Zhang, Y. Wang, S. Liu, C. Liu, L. Tong, X. Liu, Dielectric films with good dielectric breakdown strength based on poly (arylene ether nitrile) enhanced by nano boron nitride and graphene oxide via noncovalent interaction. J. Phys. Chem. Solids. 151, 109906 (2020). https://doi.org/10.1016/j.jpcs.2020.109906

    Article  CAS  Google Scholar 

  15. Z. Zhang, L. Weng, K. Guo, L. Guan, X. Wang, Z. Wu, Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram. Int. 48, 4977–4985 (2022). https://doi.org/10.1016/j.ceramint.2021.11.035

    Article  CAS  Google Scholar 

  16. Y. Li, K. Zhang, Q. Geng, M. Nie, Q. Wang, Z. Huang, Z. Wu, L. Pi, Helically intersected conductive network design for wearable electronic devices: from theory to application. ACS Appl. Mater. Inter. 13, 11480–11488 (2021). https://doi.org/10.1021/acsami.0c22086

    Article  CAS  Google Scholar 

  17. M.S. Josephine, L. Lakshmanan, N. Resmi R, P. Visu, R. Ganesan, R. Jothikumar, Monitoring and sensing COVID-19 symptoms as a precaution using electronic wearable devices. IJPCC. 16, 341–350 (2020). https://doi.org/10.1108/IJPCC-06-2020-0067

    Article  Google Scholar 

  18. J.L. González, A. Rubio, F. Moll, Human powered piezoelectric batteries to supply power to wearable electronic devices. Int. J. Soc. Mater. Eng. Resour. 10, 34–40 (2002). https://doi.org/10.5188/ijsmer.10.34

    Article  Google Scholar 

  19. F. Lin, Y. Qiu, X. Zhang, Z. Duanmu, Q. Lu, B. Huang, L. Tang, B. Lu, One-pot mechanochemical assembly of lignocellulose nanofiber/graphite nanocomposites for wearable electronic devices. Chem. Eng. J. 437, 135286 (2022). https://doi.org/10.1016/j.cej.2022.135286

    Article  CAS  Google Scholar 

  20. J. Dong, D. Gerlach, P. Koutsogiannis, P. Rudolf, G. Portale, Boosting the thermoelectric properties of PEDOT: PSS via low-impact deposition of tin oxide nanoparticles. Adv. Electron. Mater. 7, 2001284 (2021). https://doi.org/10.1002/aelm.202001284

    Article  CAS  Google Scholar 

  21. A. Hong-Ju, K. Seil, K. Kwang Ho, L. Joo-Yul, Preparation and characterization of thermoelectric PEDOT/Te nanorod array composite films. Materials 15, 148 (2022). https://doi.org/10.3390/ma15010148

    Article  CAS  Google Scholar 

  22. T. Liu, Y.L. Li, J.Y. He, Y. Hu, C.M. Wang, K.S. Zhang, X.J. Huang, L.T. Kong, J.H. Liu, Porous boron nitride nanoribbons with large width as superior adsorbents for rapid removal of cadmium and copper ions from water. New. J. Chem. 43, 3280–3290 (2019). https://doi.org/10.1039/C8NJ05299A

    Article  CAS  Google Scholar 

  23. J. Xiangqian, B. Chuncheng, L. Ling, H. Jiandong, C. Zhao, L. Xinyu, C. Weiping, L. Xiaowei, Synthesis of high porosity and high adsorption performance BNNRs aerogels with long straight and their application for water cleaning. Diam. Relat. Mater. 120, 108649 (2021). https://doi.org/10.1016/j.diamond.2021.108649

    Article  CAS  Google Scholar 

  24. J.R. Grandusky, R.V. Randive, T.C. Jordan, L.J. Schowalter, Fabrication of high performance UVC LEDs on aluminum-nitride semiconductor substrates and their potential application in point-of-use water disinfection systems, springer series in materials. Science 227, 171–192 (2016). https://doi.org/10.1007/978-3-319-24100-5-7

    Article  CAS  Google Scholar 

  25. S. Nakamura, High-power InGaN-based blue laser diodes with a long lifetime. J. Cryst. Growth. 195, 242–247 (1998). https://doi.org/10.1016/S0022-0248(98)00624-1

    Article  CAS  Google Scholar 

  26. E. Ehsan-o-llah, A. Hojjat, R. Alimorad, N. Amideddin, M.S. Saeid, Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass 46, 142–147 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003

    Article  CAS  Google Scholar 

  27. L. Chang-Gun, H. Yu-Jin, C. Young-Min, L. Jae-Keun, C. Cheol, O. Je-Myung, A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Man. 10, 85–90 (2009). https://doi.org/10.1007/s12541-009-0013-4

    Article  Google Scholar 

  28. R. Harichandran, P. Paulraj, S. Maha Pon Raja, J. Kalyana Raman, Effect of h-BN solid nanolubricant on the performance of R134a-polyolester oil-based vapour compression refrigeration system. J. Braz. Soc. Mech. Sci. 41, 140 (2019). https://doi.org/10.1007/s40430-019-1645-7

    Article  CAS  Google Scholar 

  29. D.H. Cho, J.S. Kim, S.H. Kwon, C. Lee, Y.Z. Lee, Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 302, 981–986 (2013). https://doi.org/10.1016/j.wear.2012.12.059

    Article  CAS  Google Scholar 

  30. H. Jinkun, M. Xiaomei, F. Haiyan, S. Yao, G. Qian, C. Xuejiang, Z. Jianmei, Y. Yali, N. Jinfang, Z. Yun, Tyndall-effect-enhanced supersensitive naked-eye determination of mercury (II) ions with silver nanoparticles. Sensor. Actuat. B 344, 130218 (2021). https://doi.org/10.1016/j.snb.2021.130218

    Article  CAS  Google Scholar 

  31. T. Li, Z. Cui, J. Sun, C. Jiang, G. Li, Generation of bulk nanobubbles by self-developed venturi-type circulation hydrodynamic cavitation device. Langmuir 37, 12952–12960 (2021). https://doi.org/10.1021/acs.langmuir.1c02010

    Article  CAS  Google Scholar 

  32. S. Alok K, Y. Abhimanyu, I. Arindam, R. R. Bala, Superior performance of ultrathin metal organic framework nanosheets for antiwear and antifriction testing. Coll. Surf. A 613, 126100 (2021). https://doi.org/10.1016/j.colsurfa.2020.126100

    Article  CAS  Google Scholar 

  33. J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen, P. Song, J. Hao, Y. Li, S. Fakhrhoseini, M. Naebe, X. Wang, W. Lei, Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano. 13, 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182

    Article  CAS  Google Scholar 

  34. G. Swati, K. Vaibhav, White graphene based composite proton exchange membrane: improved durability and proton conductivity. Int. J. Hydrog. Energy. 43, 21683–21689 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.051

    Article  CAS  Google Scholar 

  35. Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, Boron nitride porous microbelts for hydrogen storage. ACS Nano. 7, 1558–1565 (2013). https://doi.org/10.1021/nn305320v

    Article  CAS  Google Scholar 

  36. K. Jasuja, K. Ayinde, C.L. Wilson, S.K. Behura, M.A. Ikenbbery, D. Moore, Introduction of protonated sites on exfoliated, large-area sheets of hexagonal boron nitride. ACS Nano. 12, 9931–9939 (2018). https://doi.org/10.1021/acsnano.8b03651

    Article  CAS  Google Scholar 

  37. Y. Li, Z. Li, J. Zhai, L. Zhao, J. Chen, F. Meng, Synthesis, microstructure and thermal stability of graphene nanoplatelets coated by hexagonal boron nitride (h-BN). Mater. Chem. Phys. 221, 477–482 (2018). https://doi.org/10.1016/j.matchemphys.2018.09.079

    Article  CAS  Google Scholar 

  38. Y. Song, B. Li, S. Yang, G. Ding, C. Zhang, X. Xie, Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 5, 10337 (2015). https://doi.org/10.1038/srep10337

    Article  CAS  Google Scholar 

  39. J. Wang, Y. Xia, J. Fang, Z. Zhang, B. Xu, J. Wang, L. Ai, W. Song, K.N. Hui, X. Fan, Y. Li, Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-Micro Lett. 13, 44 (2021). https://doi.org/10.1007/s40820-020-00566-3

    Article  CAS  Google Scholar 

  40. T. Liu, Y. Li, J. He, K. Zhang, Y. Hu, X. Chen, C. Wang, X. Huang, L. Kong, J. Liu, Few-layered boron nitride nanosheets as superior adsorbents for the rapid removal of lead ions from water. J. Mater. Sci. 54, 5366–5380 (2019). https://doi.org/10.1007/s10853-018-03240-7

    Article  CAS  Google Scholar 

  41. J. Pan, J. Wang, Boron nitride aerogels consisting of varied superstructures. Nanoscale Adv. 2, 149–155 (2020). https://doi.org/10.1039/c9na00702d

    Article  CAS  Google Scholar 

  42. R.U. Heredia, K. Sachin, N. Sina, W. Julia, S. Sotoudeh, M. Zeynep, R. Rahim, Printed low-cost PEDOT:PSS/PVA polymer composite for radiation sterilization monitoring. ACS Sens. 7, 960–971 (2022). https://doi.org/10.1021/acssensors.1c02105

    Article  CAS  Google Scholar 

  43. M. Guzinski, J.M. Jarvis, F. Perez, B.D. Pendley, E. Lindner, R.D. Marco, G.A. Crespo, R.G. Acres, R. Walker, J. Bishop, PEDOT(PSS) as solid contact for ion-selective electrodes: the influence of the PEDOT(PSS) film thickness on the equilibration times. Anal. Chem. 89, 3508–3516 (2017). https://doi.org/10.1021/acs.analchem.6b04625

    Article  CAS  Google Scholar 

  44. S.V. Selvaganesh, J. Mathiyarasu, K.L.N. Phani, V. Yegnaraman, Chemical synthesis of PEDOT-Au nanocomposite. Nanoscale. Res. Lett. 2, 546–549 (2007). https://doi.org/10.1007/s11671-007-9100-6

    Article  CAS  Google Scholar 

  45. S. Harish, J. Mathiyarasu, K. Phani, V. Yegnaraman, Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal. Lett. 128, 197–202 (2009). https://doi.org/10.1007/s10562-008-9732-x

    Article  CAS  Google Scholar 

  46. S. Sakamoto, M. Okumura, Z. Zhao, Y. Furukawa, Raman spectral changes of PEDOT–PSS in polymer light-emitting diodes upon operation. Chem. Phys. Lett. 412, 395–398 (2005). https://doi.org/10.1016/j.cplett.2005.07.040

    Article  CAS  Google Scholar 

  47. M. Stavytska-Barba, A.M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT–PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114, 6822–6830 (2010). https://doi.org/10.1021/jp100135x

    Article  CAS  Google Scholar 

  48. K.J. Moreno, I. Moggio, E. Arias, I. Llarena, S.E. Moya, R.F. Ziolo, H. Barrientos, Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT:PSS). J. Nanosci. Nanotechnol. 9, 3987–3992 (2009). https://doi.org/10.1166/jnn.2009.215

    Article  CAS  Google Scholar 

  49. M. Deepa, A. Kharkwal, A.G. Joshi, A.K. Srivastava, Charge transport and electrochemical response of poly(3,4-ethylenedioxypyrrole) films improved by noble-metal nanoparticles. J. Phys. Chem. B 115, 7321–7331 (2011). https://doi.org/10.1021/jp201055y

    Article  CAS  Google Scholar 

  50. M. Namboothiry, T. Zimmerman, F.M. Coldren, J. Liu, K. Kim, D.L. Carroll, Electrochromic properties of conducting polymer metal nanoparticles composites. Synth. Met. 157, 580–584 (2007). https://doi.org/10.1016/j.synthmet.2007.06.006

    Article  CAS  Google Scholar 

  51. X.J. Lv, J.W. Sun, B. Hu, M. Ouyang, Z.Y. Fu, P.J. Wang, G.F. Bian, C. Zhang, Effective process to achieve enhanced electrochromic performances based on poly(4,4’,4″-tris[4-(2-bithienyl)pheny]amine)/ZnO nanorod composites. Nanotechnology 24, 265705 (2013). https://doi.org/10.1088/0957-4484/24/26/265705

    Article  CAS  Google Scholar 

  52. Z. Lu, C. Qi, C. Li, G. Shi, Electrochemical fabrication of p-poly(3-methylthiophene)/n-silicon solar cells. Sol. Energy. Mater. Sol. Cells. 91, 1811–1815 (2007). https://doi.org/10.1016/j.solmat.2007.06.010

    Article  CAS  Google Scholar 

  53. L. Xu, J. Zhao, C. Cui, R. Liu, J. Liu, H. Wang, Electrosynthesis and characterization of an electrochromic material from poly(1,4-bis(2-thienyl)-benzene) and its application in electrochromic devices. Electrochim. Acta. 56, 2815–2822 (2011). https://doi.org/10.1016/j.electacta.2010.12.062

    Article  CAS  Google Scholar 

  54. J.S. Lee, Y.J. Choi, H.H. Park, J.C. Pyun, Electrochromic properties of poly(3,4-ethylenedioxythiophene) nanocomposite film containing SiO2 nanoparticles. J. Appl. Polym. Sci. 122, 3080–3085 (2011). https://doi.org/10.1002/app.34130

    Article  CAS  Google Scholar 

  55. S. Xu, M. Hong, X.L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, Z.G. Chen, High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments. Chem. Mater. 31, 5238–5244 (2019). https://doi.org/10.1021/acs.chemmater.9b01500

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Heilongjiang province, China (No. YQ2021F012). National Natural Science Foundation of China (No. 62074046).

Author information

Authors and Affiliations

Authors

Contributions

XJ: Conceptualization, Methodology, Validation, Investigation, Writing—Original Draft, Writing—Review & Editing. WC: Conceptualization, Validation, Methodology, Investigation, Resources. LL: Conceptualization, Methodology, Resources, Validation, Formal analysis, Funding acquisition. PG: Conceptualization, Validation, Resources. CB: Validation, Writing—original draft. JH: Validation, Formal analysis. NS: Methodology, Validation.

Corresponding author

Correspondence to Ling Li.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 648 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Chen, W., Li, L. et al. Thermoelectric properties of boron nitride aerogels/PEDOT: PSS composite films. J Mater Sci: Mater Electron 34, 197 (2023). https://doi.org/10.1007/s10854-022-09760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09760-y

Navigation