Skip to main content

Advertisement

Log in

Thin highly transparent visible/near-infrared Ta-doped TiO2 electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study focuses on the development of novel transparent electrode for maximizing energy harvesting and performance of an optoelectronic device. Along with the high visible transparency (of 82%), this electrode has also ensured high near-infrared transparency of 88% that is substantially higher than the conventionally used Sn-doped In2O3 (ITO), F-doped SnO2 (FTO) and Al-doped ZnO (AZO). The film shows an electrical resistivity of 24.54 × 10–3 Ω cm and a high electron concentration of 1.14 × 1021 cm−3. Moreover, this highly transparent visible/near-infrared Ta-doped TiO2 electrode is realized on a glass substrate that has inferior quality as compared to its crystalline counterparts and hence cost-effective. Here, magnetron sputtering, one of the commercially viable deposition techniques, is used to synthesize this electrode, thus enabling huge commercialization possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data in this study are included in this published article and its supplementary information file.

References

  1. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering (Wiley, Hoboken, 2011)

    Google Scholar 

  2. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photon. 6, 809–817 (2012). https://doi.org/10.1038/nphoton.2012.282

    Article  CAS  Google Scholar 

  3. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016). https://doi.org/10.1016/j.tsf.2016.10.041

    Article  CAS  Google Scholar 

  4. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  Google Scholar 

  5. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgr, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010). https://doi.org/10.1016/j.spmi.2010.08.011

    Article  CAS  Google Scholar 

  6. H. Hosono, H. Ohta, M. Orita, K. Ueda, M. Hirano, Frontier of transparent conductive oxide thin films. Vacuum (2002). https://doi.org/10.1016/S0042-207X(02)00165-3

    Article  Google Scholar 

  7. D. Ginley, Handbook of transparent conductors (Springer, Boston, 2011). https://doi.org/10.1007/978-1-4419-1638-9

    Book  Google Scholar 

  8. O.E. Oladigbo, O. Adedokun, Y.K. Sanusi, Review on transparent conductive oxides thin films deposited by sol-gel spin coating technique. Int. J. Eng. Sci. Appl. 2, 88–97 (2018)

    Google Scholar 

  9. Q. Feng, Y. Sun, Y. Li, J. Yan, W. Zhong, G. Yang, W. Liu, H. Xu, Y. Liu, Highly photoluminescent monolayer MoS2 and WS2 achieved via superacid assisted vacancy reparation and doping strategy. Laser Photon. Rev. (2021). https://doi.org/10.1002/lpor.202100104

    Article  Google Scholar 

  10. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019). https://doi.org/10.1016/j.nanoen.2018.12.097

    Article  CAS  Google Scholar 

  11. L. Elsinger, R. Petit, F. van Acker, N.K. Zawacka, I. Tanghe, K. Neyts, C. Detavernier, P. Geiregat, Z. Hens, D. van Thourhout, Waveguide-coupled colloidal quantum dot light emitting diodes and detectors on a silicon nitride platform. Laser Photon. Rev. (2021). https://doi.org/10.1002/lpor.202000230

    Article  Google Scholar 

  12. T. Minami, New n-Type transparent conducting oxides. MRS Bull. (2000). https://doi.org/10.1557/mrs2000.149

    Article  Google Scholar 

  13. R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, Tin doped indium oxide thin films: electrical properties. J. Appl. Phys. 83, 2631–2645 (1998). https://doi.org/10.1063/1.367025

    Article  CAS  Google Scholar 

  14. A. Dixit, C. Sudakar, R. Naik, V.M. Naik, G. Lawes, Undoped vacuum annealed In2O3 thin films as a transparent conducting oxide. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3262963

    Article  Google Scholar 

  15. O.N. Mryasov, A.J. Freeman, Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B 64, 2331111–2331113 (2001). https://doi.org/10.1103/physrevb.64.233111

    Article  Google Scholar 

  16. Y. Wei, H. Yang, Z. Gao, X. Yun, G. Xing, C. Zhou, G. Li, Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7: Bi phosphor based on zinc vacancy. Laser Photon. Rev. (2021). https://doi.org/10.1002/lpor.202000048

    Article  Google Scholar 

  17. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Enhanced random lasing emission from highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles. Nano Energy 40, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.08.013

    Article  CAS  Google Scholar 

  18. H. Wang, P. Zhang, Z. Zang, High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0005464

    Article  Google Scholar 

  19. F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 9, 780–793 (2014). https://doi.org/10.1038/nnano.2014.215

    Article  CAS  Google Scholar 

  20. R.A. Maniyara, C. Graham, B. Paulillo, Y. Bi, Y. Chen, G. Herranz, D.E. Baker, P. Mazumder, G. Konstantatos, V. Pruneri, Highly transparent and conductive ITO substrates for near infrared applications. APL Mater. (2021). https://doi.org/10.1063/5.0040864

    Article  Google Scholar 

  21. E.H. Sargent, Infrared photovoltaics made by solution processing. Nat Photon. 3, 325–331 (2009). https://doi.org/10.1038/nphoton.2009.89

    Article  CAS  Google Scholar 

  22. S.K. Mukherjee, H.W. Becker, A.P. Cadiz Bedini, A. Nebatti, C. Notthoff, D. Rogalla, S. Schipporeit, A. Soleimani-Esfahani, D. Mergel, Structural and electrical properties of Nb-doped TiO2 films sputtered with plasma emission control. Thin Solid Films 568, 94–101 (2014). https://doi.org/10.1016/j.tsf.2014.08.011

    Article  CAS  Google Scholar 

  23. D. Chen, G. Xu, L. Miao, S. Nakao, P. Jin, Sputter deposition and computational study of M-TiO2 (M=Nb, Ta) transparent conducting oxide films. Surf. Coat. Technol. 206, 1020–1023 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.007

    Article  CAS  Google Scholar 

  24. N. Noor, I.P. Parkin, Enhanced transparent-conducting fluorine-doped tin oxide films formed by aerosol-assisted chemical vapour deposition. J. Mater. Chem. C 1, 984–996 (2013). https://doi.org/10.1039/c2tc00400c

    Article  CAS  Google Scholar 

  25. Y. Smirnov, J. Holovsky, G. Rijnders, M. Morales-Masis, Origins of infrared transparency in highly conductive perovskite stannate BaSnO3. APL Mater. (2020). https://doi.org/10.1063/5.0010322

    Article  Google Scholar 

  26. L. Hu, D.S. Hecht, G. Grüner, Infrared transparent carbon nanotube thin films. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3075067

    Article  Google Scholar 

  27. S. Parthiban, E. Elangovan, K. Ramamurthi, R. Martins, E. Fortunato, High near-infrared transparency and carrier mobility of Mo doped In2O3 thin films for optoelectronics applications. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3224946

    Article  Google Scholar 

  28. T. Dhakal, A.S. Nandur, R. Christian, P. Vasekar, S. Desu, C. Westgate, D.I. Koukis, D.J. Arenas, D.B. Tanner, Transmittance from visible to mid infra-red in AZO films grown by atomic layer deposition system. Sol. Energy 86, 1306–1312 (2012). https://doi.org/10.1016/j.solener.2012.01.022

    Article  CAS  Google Scholar 

  29. Y. Chuai, X. Wang, C. Zheng, Y. Zhang, H. Shen, Y. Wang, Highly infrared-transparent and p-type conductive CuSc1-xSnxO2 thin films and a p-CuScO2:Sn/n-ZnO heterojunction fabricated by the polymer-assisted deposition method. RSC Adv. 6, 31726–31731 (2016). https://doi.org/10.1039/c6ra00919k

    Article  CAS  Google Scholar 

  30. P. Wojdylo, Thickness optimization of ultrathin nickel films as transparent conductive electrodes. McMaster J. Eng. Phys. 2017(2), 1–4 (2017)

    Google Scholar 

  31. L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010). https://doi.org/10.1021/nn1005232

    Article  CAS  Google Scholar 

  32. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  33. T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, T. Hasegawa, Properties of TiO2-based transparent conducting oxides. Phys. Status Solidi A 207, 1529–1537 (2010). https://doi.org/10.1002/pssa.200983774

    Article  CAS  Google Scholar 

  34. C. Sotelo-Vazquez, N. Noor, A. Kafizas, R. Quesada-Cabrera, D.O. Scanlon, A. Taylor, J.R. Durrant, I.P. Parkin, Multifunctional P-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater. 27, 3234–3242 (2015). https://doi.org/10.1021/cm504734a

    Article  CAS  Google Scholar 

  35. A. Kafizas, N. Noor, C.J. Carmalt, I.P. Parkin, TiO2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach. J. Mater. Chem. C 1, 6335–6346 (2013). https://doi.org/10.1039/c3tc31472c

    Article  CAS  Google Scholar 

  36. S.M. Bawaked, S. Sathasivam, D.S. Bhachu, N. Chadwick, A.Y. Obaid, S. Al-Thabaiti, S.N. Basahel, C.J. Carmalt, I.P. Parkin, Aerosol assisted chemical vapor deposition of conductive and photocatalytically active tantalum doped titanium dioxide films. J. Mater. Chem. A 2, 12849–12856 (2014). https://doi.org/10.1039/c4ta01618a

    Article  CAS  Google Scholar 

  37. K. Manwani, E. Panda, Effect of annealing temperature on the microstructure and optoelectronic properties of niobium-doped anatase TiO2 thin films grown on soda-lime glass substrate. Bull. Mater. Sci. (2022). https://doi.org/10.1007/s12034-022-02786-2

    Article  Google Scholar 

  38. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, computer. Mass. Inst. Technol. Acta Cryst. 17, 925–946 (1963)

    Google Scholar 

  39. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 1–3 (2005). https://doi.org/10.1063/1.1949728

    Article  CAS  Google Scholar 

  40. T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, T. Hasegawa, Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn. J. Appl. Phys. Part 2 (2005). https://doi.org/10.1143/JJAP.44.L1063

    Article  Google Scholar 

  41. H. Anh Huy, B. Aradi, T. Frauenheim, P. Deák, Comparison of Nb- and Ta-doping of anatase TiO2 for transparent conductor applications. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4733350

    Article  Google Scholar 

  42. K.C. Ok, Y. Park, K.B. Chung, J.S. Park, The effect of Ta doping in polycrystalline TiOx and the associated thin film transistor properties. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4831783

    Article  Google Scholar 

  43. J. Osorio-Guillén, S. Lany, A. Zunger, Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.036601

    Article  Google Scholar 

  44. P. Mazzolini, P. Gondoni, V. Russo, D. Chrastina, C.S. Casari, A.L. Bassi, Tuning of electrical and optical properties of highly conducting and transparent Ta doped TiO2 polycrystalline films. J. Phys. Chem. C 119, 6988–6997 (2015). https://doi.org/10.1021/jp5126156

    Article  CAS  Google Scholar 

  45. W. Zhao, L. He, X. Feng, C. Luan, J. Ma, Structural, electrical and optical properties of epitaxial Ta-doped titania films by MOCVD. CrystEngComm 20, 5395–5401 (2018). https://doi.org/10.1039/c8ce01072b

    Article  CAS  Google Scholar 

  46. M. Neubert, S. Cornelius, J. Fiedler, T. Gebel, H. Liepack, A. Kolitsch, M. Vinnichenko, Overcoming challenges to the formation of high-quality polycrystalline TiO2: Ta transparent conducting films by magnetron sputtering. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4819088

    Article  Google Scholar 

  47. Y. Liu, Q. Peng, Z.P. Zhou, G. Yang, Effects of substrate temperature on properties of transparent conductive Ta-doped TiO2 films deposited by radio-frequency magnetron sputtering. Chin. Phys. Lett. (2018). https://doi.org/10.1088/0256-307X/35/4/048101

    Article  Google Scholar 

  48. B. Bin Wu, F.M. Pan, Y.E. Yang, Annealing effect of pulsed laser deposited transparent conductive Ta-doped titanium oxide films. Chin. Phys. Lett. (2011). https://doi.org/10.1088/0256-307X/28/11/118102

    Article  Google Scholar 

  49. P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, K.C. James Raju, D. Devraj Kumar, P.V. Thomas, Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Progress Nat. Sci.: Mater. Int. 24, 218–225 (2014). https://doi.org/10.1016/j.pnsc.2014.05.010

    Article  CAS  Google Scholar 

  50. A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, F. Shan, Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4953460

    Article  Google Scholar 

  51. L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, G. Shao, Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity. Sol. Energy Mater. Sol. Cells 149, 310–319 (2016). https://doi.org/10.1016/j.solmat.2016.01.040

    Article  CAS  Google Scholar 

  52. T. Patel, E. Panda, Interpreting the conductive atomic force microscopy measured inhomogeneous nanoscale surface electrical properties of Al-doped ZnO films, surface and interface. Analysis 48, 1384–1391 (2016). https://doi.org/10.1002/sia.6048

    Article  CAS  Google Scholar 

  53. R. Ranjan, A. Prakash, A. Singh, A. Singh, A. Garg, R.K. Gupta, Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A 6, 1037–1047 (2018). https://doi.org/10.1039/c7ta09193a

    Article  CAS  Google Scholar 

  54. P. Guo, Y. Xue, C. Huang, Y. Xue, Z. Xia, G. Zhang, Z. Fu, Optical properties and elemental composition of Ta2O5 thin films. Symp. Photon. Optoelectron. (2009). https://doi.org/10.1109/sopo.2009.523010

    Article  Google Scholar 

  55. R.T. Mittireddi, N.M. Patel, A.R.S. Gautam, V. Soppina, E. Panda, Non-stoichiometric amorphous TiOx as a highly reactive, transparent anti-viral surface coating. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160610

    Article  Google Scholar 

  56. P. Prieto, R.E. Kirby, X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol. A 13, 2819–2826 (1995). https://doi.org/10.1116/1.579711

    Article  CAS  Google Scholar 

  57. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013). https://doi.org/10.1039/c3nr00476g

    Article  CAS  Google Scholar 

  58. M.A. Alim, T. Bak, A. Atanacio, J. du Plessis, M. Zhou, J. Davis, J. Nowotny, Electrical conductivity and defect disorder of tantalum-doped TiO2. J. Am. Ceram. Soc. 100, 4088–4100 (2017). https://doi.org/10.1111/jace.14959

    Article  CAS  Google Scholar 

  59. N. Laegreid, G.K. Wehner, Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 ev. J. Appl. Phys. 32, 365–369 (1961). https://doi.org/10.1063/1.1736012

    Article  CAS  Google Scholar 

  60. E. Aubry, J. Lambert, V. Demange, A. Billard, Effect of Na diffusion from glass substrate on the microstructural and photocatalytic properties of post-annealed TiO2 films synthesised by reactive sputtering. Surf. Coat. Technol. 206, 4999–5005 (2012). https://doi.org/10.1016/j.surfcoat.2012.06.012

    Article  CAS  Google Scholar 

  61. D. Kim, S. Lee, Persistent metallic Sn-doped In2O3 epitaxial ultrathin films with enhanced infrared transmittance. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-61772-y

    Article  Google Scholar 

  62. A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, M. Okuda, Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume. Jpn. J. Appl. Phys. (2001). https://doi.org/10.1143/JJAP.40.L401

    Article  Google Scholar 

  63. M. Thirumoorthi, J. Thomas Joseph Prakash, Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 4, 124–132 (2016). https://doi.org/10.1016/j.jascer.2016.01.001

    Article  Google Scholar 

  64. S. Luo, K. Okada, S. Kohiki, F. Tsutsui, H. Shimooka, F. Shoji, Optical and electrical properties of indium tin oxide thin films sputter-deposited in working gas containing hydrogen without heat treatments. Mater. Lett. 63, 641–643 (2009). https://doi.org/10.1016/j.matlet.2008.12.008

    Article  CAS  Google Scholar 

  65. H. Kim, R.C.Y. Auyeung, A. Piqué, Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516, 5052–5056 (2008). https://doi.org/10.1016/j.tsf.2007.11.079

    Article  CAS  Google Scholar 

  66. C. Han, L. Mazzarella, Y. Zhao, G. Yang, P. Procel, M. Tijssen, A. Montes, L. Spitaleri, A. Gulino, X. Zhang, O. Isabella, M. Zeman, High-mobility hydrogenated fluorine-doped indium oxide film for passivating contacts c-Si solar cells. ACS Appl. Mater. Interfaces 11, 45586–45595 (2019). https://doi.org/10.1021/acsami.9b14709

    Article  CAS  Google Scholar 

  67. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732–746 (2014). https://doi.org/10.3390/coatings4040732

    Article  CAS  Google Scholar 

  68. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films (2003). https://doi.org/10.1016/S0040-6090(03)01158-1

    Article  Google Scholar 

  69. M. Tadatsugu, N. Hidehito, T. Shinzo, Optical properties of aluminium doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 24, L605–L607 (1985)

    Article  Google Scholar 

  70. C. Singh, E. Panda, Variation of electrical properties in thickening Al-doped ZnO films: role of defect chemistry. RSC Adv. 6, 48910–48918 (2016). https://doi.org/10.1039/c6ra06513a

    Article  CAS  Google Scholar 

  71. N. Bandaru, E. Panda, Annealing induced transformation and enhancement in the electronic defect states of Al doped ZnO films and their correlation with the optoelectronic properties. J. Alloys Compd. 789, 573–587 (2019). https://doi.org/10.1016/j.jallcom.2019.03.032

    Article  CAS  Google Scholar 

  72. T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, T. Hasegawa, Fabrication of highly conductive Ti1-xNbxO2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2742310

    Article  Google Scholar 

  73. N. Yamada, T. Hitosugi, N.L.H. Hoang, Y. Furubayashi, Y. Hirose, T. Shimada, T. Hasegawa, Fabrication of low resistivity Nb-doped TIO2 transparent conductive polycrystalline films on glass by reactive sputtering. Jpn. J. Appl. Phys. Part 1 46, 5275–5277 (2007). https://doi.org/10.1143/JJAP.46.5275

    Article  CAS  Google Scholar 

  74. K. Manwani, E. Panda, Thickness induced modifications in the valence, conduction bands and optoelectronic properties of undoped and Nb-doped anatase TiO2 thin films. Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.106048

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Science and Engineering Research Board (SERB) and Department of Science and Technology (DST), Government of India (Project No. EMR/2016/001182 and SR/FST/ET-I/2017/18). We are also thankful to ACMS, IIT Kanpur, India, for XPS characterization.

Funding

This work is financially supported by Science and Engineering Research Board (SERB) and Department of Science and Technology (DST), Government of India (Project No. EMR/2016/001182 and SR/FST/ET-I/2017/18).

Author information

Authors and Affiliations

Authors

Contributions

KM and EP involved in conceptualization, KM, SS and TAP took part in methodology, SS, KM and TAP involved in formal analysis and investigation, SS took part in writing—original draft preparation, EP involved in writing—review and editing, EP took part in funding acquisition, EP involved in resources, and EP involved in supervision.

Corresponding author

Correspondence to Emila Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Manwani, K., Patel, T.A. et al. Thin highly transparent visible/near-infrared Ta-doped TiO2 electrode. J Mater Sci: Mater Electron 34, 234 (2023). https://doi.org/10.1007/s10854-022-09672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09672-x

Navigation