Skip to main content

Advertisement

Log in

Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2-based thin films and nanomaterials have been fabricated via physical and solution-based techniques by various research groups around the globe. Generally, most applications of TiO2 involve photocatalytic activity for water and air purification, self-cleaning surfaces, antibacterial activity, and superhydrophilicity. As a wide-bandgap semiconductor, modified TiO2 belongs to a class of materials called transparent semiconducting oxides (TSOs), which are simultaneously optically transparent and electrically conductive. TSOs continue to be in high demand for a variety of applications ranging from transparent electronics and sensor devices to light detecting and emitting devices in telecommunications. However, reports on TiO2 applications as an effective TSO for transparent electronics applications have been limited. In general, TiO2 is intrinsically an n-type semiconductor but can be doped to have p-type semiconductivity. This provides a very important opportunity to fabricate all-transparent homojunction devices for light harvesting and energy storage. P-type TSOs have recently attracted tremendous interest in the field of active devices for emerging transparent electronics for potential use in ultra-violet light-based solar cells. Therefore, a detailed overview of the synthesis, band structure modification via doping, properties, and applications of modified TiO2 as n- and p-type TSOs is warranted. This article comprehensively reviews the latest developments. The discussion includes solution-based wet chemical techniques and vacuum-based dry physical techniques fabricating TiO2–TSOs. The synthesis of p-TiO2 in particular is discussed in detail as it may provide interesting breakthroughs in emerging transparent electronics applications. Also, the structural, optical, and electrical properties of TiO2 are discussed in the context of TSO applications, specifically the defect chemistry of TiO2 to obtain n- and p-type semiconductivity, which could provide interesting insights into the band structure engineering of TiO2 for conductivity reversal. Applications of both n- and p-type TiO2 have been reviewed in detail in relation to thin film transparent homo/heterojunction devices, dye-sensitized solar cells, electrochromic displays, and other energy-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Cava RJ, Phillips JM, Kwo J, Thomas GA, van Dover RB, Carter SA, Krajewski JJ, Peck WF Jr, Marshall JH, Rapkine DH (1994) GaInO3: a new transparent conducting oxide. Appl Phys Lett 64:2071–2072

    Article  Google Scholar 

  2. Phillips JM, Cava RJ, Thomas GA, Carter SA, Kwo J, Siegrist T, Krajewski JJ, Marshall JH, Peck WF Jr, Rapkine DH (1995) A highly-conducting transparent conductor: zinc indium tin oxide. Appl Phys Lett 67:2246–2248

    Article  Google Scholar 

  3. Badeker K (1907) Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann Phys (Leipz) 22:749–766

    Article  Google Scholar 

  4. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26

    Article  Google Scholar 

  5. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photo detectors and solar cells. J Appl Phys 93:3693–3723

    Article  Google Scholar 

  6. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1936

    Article  Google Scholar 

  7. Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. J Mater Sci 36:4201–4207. doi:10.1023/A:1017929207882

    Article  Google Scholar 

  8. Bhosle V, Prater JT, Yang F, Burk D, Forrest SR, Narayan J (2007) Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. J Appl Phys 102:023501–023505

    Article  Google Scholar 

  9. Fortunato E, Ginley D, Hosono H, Paine DC (2007) Transparent conducting oxides for photovoltaics. MRS Bull 32:242–247

    Article  Google Scholar 

  10. Fortunato E, Raniero L, Silva L, Gonçalves A, Pimentel A, Barquinha P, Guas HA, Pereira L, Gonçalves G, Ferreira I, Elangovan E, Martins R (2008) Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Sol Energy Mater Sol Cells 92:1605–1610

    Article  Google Scholar 

  11. Hartnagel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics, Bristol

    Google Scholar 

  12. Pan CA, Ma TP (1980) High quality transparent conductive indium oxide films prepared by thermal evaporation. Appl Phys Lett 37:163–165

    Article  Google Scholar 

  13. Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys 60:R123–R160

    Article  Google Scholar 

  14. Calnan S, Tiwari AN (2010) High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 518:1839–1849

    Article  Google Scholar 

  15. Minami T (2000) New n-type transparent conducting oxides. Mater Res Bull 25:38–44

    Article  Google Scholar 

  16. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182

    Article  Google Scholar 

  17. Lim JH, Hwang DK, Kim HS, Oh JY, Yang JH, Navamathavan R, Park SJ (2004) Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN. Appl Phys Lett 85:6191–6193

    Article  Google Scholar 

  18. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25:52–57

    Article  Google Scholar 

  19. Banerjee AN, Joo SW, Min BK (2014) Nanocrystalline ZnO film deposition on flexible substrate by low-temperature sputtering process for plastic displays. J Nanosci Nanotechnol 14:7970–7975

    Article  Google Scholar 

  20. Banerjee AN, Ghosh CK, Chattopadhyay KK, Minoura H, Sarkar AK, Akiba A, Kamiya A, Endo T (2006) Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496:112–116

    Article  Google Scholar 

  21. Banerjee AN, Maity R, Kundoo S, Chattopadhyay KK (2004) Poole–Frenkel effect in nanocrystalline SnO2: F thin films prepared by sol–gel-dip-coating technique. Phys Status Solid A 201:983–989

    Article  Google Scholar 

  22. Banerjee AN, Kundoo S, Saha P, Chattopadhyay KK (2003) Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by sol–gel method. J Sol Gel Sci Technol 28:105–110

    Article  Google Scholar 

  23. Maity R, Banerjee AN, Chattopadhyay K (2004) Low-macroscopic field emission from fibrous ZnO thin film prepared by catalyst-free solution route. Appl Surf Sci 236:231

    Article  Google Scholar 

  24. Banerjee AN, Chattopadhyay KK (2004) Low-threshold field-emission from transparent p-type CuAlO2 thin film prepared by dc sputtering. Appl Surf Sci 225:243

    Article  Google Scholar 

  25. Banerjee AN, Ghosh CK, Das S, Chattopadhyay KK (2005) Electro-optical characteristics and field-emission properties of reactive DC sputtered p-CuAlO2+x thin films. Phys B 370:264–276

    Article  Google Scholar 

  26. Norton DP (2004) Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng R 43:139–247

    Article  Google Scholar 

  27. Major S, Banerjee A, Chopra KL (1984) Annealing studies of undoped and indium-doped zinc oxide. Thin Solid Films 122:31–43

    Article  Google Scholar 

  28. Minami T, Nanto H, Takata S (1984) Highly conductive and transparent aluminium doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 23:L280–L282

    Article  Google Scholar 

  29. Hu J, Gordon RG (1991) Textured fluorine doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Sol Cells 30:437–450

    Article  Google Scholar 

  30. Choi BH, Im HB, Song JS, Yoon KH (1990) Optical and electrical properties of Ga2O3-doped ZnO films by r.f. sputtering. Thin Solid Films 193:712–720

    Article  Google Scholar 

  31. Avaritsiotis N, Howson RP (1981) Composition and conductivity of fluorine-doped conducting indium oxide films prepared by reactive ion plating. Thin Solid Films 77:351–357

    Article  Google Scholar 

  32. Haacke G, Mealmaker WE, Siegel LA (1978) Sputter deposition and characterization of Cd2SnO4 films. Thin Solid Films 55:67–81

    Article  Google Scholar 

  33. Otabe T, Ueda K, Kudoh A, Hosono H, Kawazoe H (1998) n-type electrical conduction in transparent thin films of delafossite-type AgInO2. Appl Phys Lett 72:1036–1038

    Article  Google Scholar 

  34. Dali SE, Sai Sunder VVSS, Jayachandran M, Chockalingam MJ (1998) Synthesis and characterization of Aln2O4 indates, A = Mg, Ca, Sr, Ba. J Mater Sci Lett 17:619–623

    Article  Google Scholar 

  35. Edwards DD, Mason TO, Goutenoire F, Poeppelmeier KR (1997) A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system. Appl Phys Lett 70:1706–1708

    Article  Google Scholar 

  36. Minami T, Takata S, Kakumu T, Sonohara H (1995) New transparent conducting MgIn2O4 Zn2In2O5 thin films prepared by magnetron sputtering. Thin Solid Films 270:22–26

    Article  Google Scholar 

  37. Minami T, Kakumu T, Shimokawa K, Takata S (1998) New transparent conducting ZnO–In2O3–SnO2 thin films prepared by magnetron sputtering. Thin Solid Films 317:318–321

    Article  Google Scholar 

  38. Omata T, Ueda N, Ueda K, Kawazoe H (1994) New ultraviolet-transport electroconductive oxide, ZnGa2O4 spinel. Appl Phys Lett 64:1077–1078

    Article  Google Scholar 

  39. Kammler DR, Mason TO, Young DL, Coutts TJ, Ko D, Poeppelemier KR, Williamson DL (2001) Comparison of thin film and bulk forms of the transparent conducting oxide solution Cd 1+x In2−2x Sn x O4. J Appl Phys 90:5980–5985

    Google Scholar 

  40. Lewis BG, Paine D (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27

    Article  Google Scholar 

  41. Hitosugi T, Yamada N, Nakao S, Hirose Y, Hasegawa T (2010) Properties of TiO2-based transparent conducting oxides. Phys Status Solid A 207:1529–1537

    Article  Google Scholar 

  42. Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang NLH, Nakao S, Yamada N, Hasegawa T (2010) Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces. J Appl Phys 107:53110-1–53110-4

    Article  Google Scholar 

  43. Gillespie MA (2007) Sputtered Nb-and Ta-doped TiO2 transparent conducting oxide films on glass. J Mater Res 22:2832–2837

    Article  Google Scholar 

  44. Hitosugi Furubayashi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T (2005) A transparent metal:Nb-doped anatase TiO2. Appl Phys Lett 86:252101–252103

    Article  Google Scholar 

  45. Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T (2005) Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn J Appl Phys 44:33–36

    Google Scholar 

  46. Yamada N, Hitosugi T, Kasai J, Hoang NLH, Nakao S, Hirose Y, Shimada T, Hasegawa T (2010) Transparent conducting Nb-doped anatase TiO2 (TNO) thin films sputtered from various oxide targets. Thin Solid Films 518:3101–3104

    Article  Google Scholar 

  47. Anitha VC, Deepthy M, Nair SV, Prasanth R (2010) Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochim Acta 55:3703–3713

    Article  Google Scholar 

  48. Banerjee AN (2011) The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 4:35–65

    Article  Google Scholar 

  49. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  Google Scholar 

  50. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  51. Sirghi L, Hatanaka Y (2003) Hydrophilicity of amorphous TiO2 ultra-thin films. Surf Sci 530:L323–L327

    Article  Google Scholar 

  52. Kim HR, Lee TG, Shul YG (2007) Photoluminescence of La/Ti mixed oxides prepared using sol–gel process and their pCBA photodecomposition. J Photochem Photobiol A 185:156–160

    Article  Google Scholar 

  53. Saif M, Abdel-Mottaleb MSA (2007) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications. Inorg Chim Acta 360:2863–2874

    Article  Google Scholar 

  54. Asghar MH, Shoaib M, Placido F, Naseem S (2009) Modeling and preparation of practical optical filters. Curr Appl Phys 9:1046–1053

    Article  Google Scholar 

  55. Frindell KL, Bartl MH, Robinson MR, Bazan GC, Popitsch A, Stucky GD (2003) Visible and near IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. J Solid State Chem 172:81–88

    Article  Google Scholar 

  56. Thi Vu TH, Thi AuH, Tran LT, Nguyen TMT, Tran TTT, Pham MT, Do MH, Nguyen DL (2014) Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. Mater Sci 49:5617–5625

    Article  Google Scholar 

  57. Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754. doi:10.1007/s10853-013-7861-0

    Article  Google Scholar 

  58. Banerjee AN, Joo SW, Min BK (2012) Photocatalytic degradation of organic dye by sol–gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation. J Nanomater 2012:201492

    Article  Google Scholar 

  59. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  Google Scholar 

  60. Thompson TL, Yates JT Jr (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106:4428–4453

    Article  Google Scholar 

  61. Diebold U (2003) Structure and properties of TiO2 surfaces: a brief review. Appl Phys A 76:681–687

    Article  Google Scholar 

  62. Girish Kumar S, Gomathi Devi L (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241

    Article  Google Scholar 

  63. McCullagh C, Robertson JMC, Bahnemann DW, Robertson PKJ (2007) The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic microorganisms: a review. Res Chem Intermed 33:359–375

    Article  Google Scholar 

  64. Macwan DP, Dave Pragnesh N, Chaturvedi Shalini (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. doi:10.1007/s10853-011-5378-y

    Article  Google Scholar 

  65. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  Google Scholar 

  66. Anitha VC, Lee J-H, Jintae L, Banerjee AN, Joo SW, Min B-K (2015) Biofilm formation on TiO2 nanotube with controlled pore diameter and surface wettability. Nanotechnology 26:065102

    Article  Google Scholar 

  67. Zeman P, Takabayashi S (2002) Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering. J Vac Sci Technol A 20:388

    Article  Google Scholar 

  68. Zhao G, Tian Q, Liu Q, Han G (2005) Effect of HPC on the microstructure and hydrophilicity of sol–gel-derived TiO2 films. Surf Coat Technol 198:55

    Article  Google Scholar 

  69. Thomas G (1997) Invisible circuits. Nature 389:907–908

    Article  Google Scholar 

  70. Nandy S, Banerjee AN, Fortunato E, Martins R (2013) A review on Cu2O and CuI-based p-type semiconducting transparent oxide materials. Rev Adv Sci Eng 2:273–304

    Article  Google Scholar 

  71. Banerjee AN, Chattopadhyay KK (2005) Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog Cryst Growth Charact Mater 50:52–105

    Article  Google Scholar 

  72. Kawazoe H, Yanagi H, Ueda K, Hosono H (2000) Transparent p-type conducting oxides: design and fabrication of pn heterojunctions. MRS Bull 25:28–36

    Article  Google Scholar 

  73. Banerjee AN, Joo SW (2013) Poole–Frenkel effect in sputter-deposited CuAlO2+x nanocrystals. Nanotechnology 24:165705–165707

    Article  Google Scholar 

  74. Facchetti A, Marks TJ (2010) Transparent electronics: from synthesis to applications. Wiley, West Sussex

    Book  Google Scholar 

  75. Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236:27–31

    Article  Google Scholar 

  76. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) p-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942

    Article  Google Scholar 

  77. Cao J, Zhang Y, Liu L, Ye J (2013) A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem Commun 49:3440–3442

    Article  Google Scholar 

  78. Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164

    Article  Google Scholar 

  79. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  Google Scholar 

  80. Juodkazis K, Juodkazyte J, Jelmakas E, Kalinauskas P, Valsiunas I, Miecinskas P, Juodkazis S (2010) Photoelectrolysis of water: solar hydrogen–achievements and perspectives. Opt Express 18:A147–A160

    Article  Google Scholar 

  81. Xiaobo C, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  82. Wold A (1993) Photocatalytic properties of TiO2. Chem Mater 5:280–283

    Article  Google Scholar 

  83. Han W, Wang YD, Zheng YF (2008) In vitro biocompatibility study of nano TiO2 materials. Adv Mater Res 47–50:1438–1441

    Article  Google Scholar 

  84. Jones RO, Gunnarsson O (1989) The density functional formalism, Its applications and prospects. Rev Mod Phys 61:689

    Article  Google Scholar 

  85. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-functions approaches. Rev Mod Phys 74:601

    Article  Google Scholar 

  86. Gonze X, Amadon B, Anglade P-M, Beuken J-M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D, Hermet P, Jollet F, Jomard G, Oliveira MJT (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180:2582–2615

    Article  Google Scholar 

  87. Zhu T, Gao S-P (2014) The stability, electronic structure, and optical property of TiO2 polymorphs. J Phys Chem C 118:11385–11396

    Article  Google Scholar 

  88. Kang W, Hybertsen MS (2010) Quasiparticle and optical properties of rutile and anatase TiO2. Phys Rev B 82:085203

    Article  Google Scholar 

  89. Chiodo L, Garcia-Lastra JM, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A (2010) Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases. Phys Rev B 82:045207

    Article  Google Scholar 

  90. Patrick CE, Giustino F (2012) GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U. J Phys Condens Matter 24:202201

    Article  Google Scholar 

  91. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24:195503

    Article  Google Scholar 

  92. Thulin L, Guerra J (2008) Calculations of strain-modified anatase TiO2 band structures. Phys Rev B 77:195112

    Article  Google Scholar 

  93. Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T (2008) Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl Phys Express 1:111203

    Article  Google Scholar 

  94. Hirose Y, Yamada N, Nakao S, Hitosugi T, Shimada T, Hasegawa T (2009) Large electron mass anisotropy in a d-electron-based transparent conducting oxide: Nb-doped anatase TiO2 epitaxial films. Phys Rev B 79:165108

    Article  Google Scholar 

  95. Nogawa H, Chikamatsu A, Hirose Y, Nakao S, Kumigashira H, Oshima M, Hasegawa T (2011) Carrier compensation mechanism in heavily Nb-doped anatase Ti1−x Nb x O2 + δ epitaxial thin films. J Phys D Appl Phys 44:365404

    Article  Google Scholar 

  96. Modes T, Scheffel B, Chr Meetzner, Zywitzki O, Reinhold E (2005) Structure and properties of titanium oxide layers deposited by reactive plasma activated electron beam evaporation. Surf Coat Technol 200:306–309

    Article  Google Scholar 

  97. Ho W, Yu JC, Lee S (2007) Photocatalytic activity and photo-induced hyrophilicity of mesoporous TiO2 thin films coated on aluminium substrate. Appl Catal B Environ 73:135–143

    Article  Google Scholar 

  98. Mathur S, Kuhn P (2006) CVD of titanium oxide coatings: comparative evaluation of thermal and plasma assisted processes. Surf Coat Technol 201:807–814

    Article  Google Scholar 

  99. Frach P, Gloss D, Chr Metzner, Modes T, Scheffel B, Zywitzki O (2006) Deposition of photocatalytic TiO2 layers by pulse magnetron sputtering and by plasma-activated evaporation. Vacuum 80:679–683

    Article  Google Scholar 

  100. Amor SB, Guedri L, Baud G, Jacquet M, Ghedira M (2002) Influence of the temperature on the properties of sputtered titanium oxide films. Mater Chem Phys 77:903–911

    Article  Google Scholar 

  101. Sato Y, Sanno Y, Tasaki C, Oka N (2010) Electrical and optical properties of Nb-doped TiO2 films deposited by dc magnetron sputtering using slightly reduced Nb-doped TiO2−x ceramic targets. J Vac Sci Technol A 28:4

    Google Scholar 

  102. Niu Z, Gaob F, Jia X, Zhang W, Chena W, Qian K (2006) Synthesis studies of sputtering TiO2 films on poly(dimethylsiloxane) for surface modification. Colloids Surf A Physicochem Eng Asp 272:170–175

    Article  Google Scholar 

  103. Sicha J, Herman D, Musil J, Stryhal Z, Pavlik J (2007) High-rate low-temperature dc pulsed magnetron sputtering of photocatalytic TiO2 films: the effect of repetition frequency. Nanoscale Res Lett 2:123–129

    Article  Google Scholar 

  104. Musil J, Herman D, Sicha J (2006) Low-temperature sputtering of crystalline TiO2 films. J Vac Sci Technol A 24:521

    Article  Google Scholar 

  105. Herman D, Musil J, Sicha J (2006) Photoactivated properties of TiO2 films prepared by magnetron sputtering. In: Proceedings of the PSE 2006 in plasma processes & polymers

  106. Hitosugi T, Ueda A, Nakao S, Yamada N, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Fabrication of highly conductive Ti1−x Nb x O2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition. Appl Phys Lett 90:212106

    Article  Google Scholar 

  107. Yamada N, Hitosugi T, Hoang NLH, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Fabrication of low resistivity Nb-doped TiO2 transparent conductive polycrystalline films on glass by reactive sputtering. Jpn J Appl Phys 46:5275

    Article  Google Scholar 

  108. Maghanga CM, Niklasson GA, Granqvist CG (2009) Optical modelling of spectrally selective reflectors based on TiO2: Nb transparent conducting oxide films for silicon solar cell applications. Proc SPIE 7407:74070F-3

    Article  Google Scholar 

  109. Smith DY, Shiles E, Inokuti M (1985) The optical properties of metallic aluminum. In: Palik ED (ed) Handbook of optical constants of solids. Academic, San Diego, pp 369–406

    Chapter  Google Scholar 

  110. Eriksson TS, Hjortsberg A, Niklasson GA, Granqvist CG (1981) Infrared optical properties of evaporated alumina films. Appl Opt 20:2742–2746

    Article  Google Scholar 

  111. Kasai J, Hitosugi T, Moriyama M, Goshonoo K, Hoang NLH, Nakao S, Yamada N, Hasegawa T (2010) Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces. J Appl Phys 107:053110

    Article  Google Scholar 

  112. Hitosugi T, Hirose Y, Kasai J, Furubayashi Y, Ohtani M, Inaba K, Nakajima K, Chikyow T, Shimada T, Hasegawa T (2005) Heteroepitaxial growth of rutile TiO2 on GaN(0001) by pulsed laser deposition. Jpn J Appl Phys 44:L1503–L1505

    Article  Google Scholar 

  113. Hoang NLH, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T, Hasegawa T (2008) Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering. Appl Phys Express 1:115001

    Article  Google Scholar 

  114. Wu B-B, Pan F-M, Yang Y-E (2011) Annealing effect of pulsed laser deposited transparent conductive Ta-doped titanium oxide films. Chin Phys Lett 28(11):118102

    Article  Google Scholar 

  115. Hsu LS, Lucaa D (2003) Substrate and annealing effects on the pulsed-laser deposited TiO2 thin films. J Optoelectron Adv Mater 5:841–847

    Google Scholar 

  116. Tonooka K, Chiu Te-Wei, Kikuchi N (2009) Preparation of transparent conductive TiO2: Nb thin films by pulsed laser deposition. Appl Surf Sci 255:9695–9698

    Article  Google Scholar 

  117. Kambe M, Sato K, Kobayashi D, Kurokawa Y, Miyajimai S, Fukawa M, Taneda N, Yamada A, Konagai M (2006) TiO2-coated transparent conductive oxide (SnO2:F) films prepared by atmospheric pressure chemical vapor deposition with high durability against atomic hydrogen. Jpn J Appl Phys 45:L29–L293

    Article  Google Scholar 

  118. Iida T, Takamidou Y, Watabe T, Yoshida N, Itoh T, Nonomura S (2006) High conductive TiO2 films due to auto doping by hot wire CVD method for protecting materials of TCO against atomic hydrogen exposures 1-4244-0016-3. In: IEEE 4th world conference on photovoltaic energy conversion, conference record of the 2006, pp 1537–1539

  119. Fanga Q, Zhanga J-Y, Wang ZM, Wub JX, O’Sullivanc BJ, Hurleyc PK, Leedhamd TL, Davies H, Audier MA, Jimenez C, Senateure J-P, Boyd Ian W (2003) Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD. Thin Solid Films 428:263–268

    Article  Google Scholar 

  120. Yazawa T, Machida F, Kubo N, Jin T (2009) Photocatalytic activity of transparent porous glass supported TiO2. Ceram Int 35:3321–3325

    Article  Google Scholar 

  121. Mills A, Lee S-K, Lepre A, Parkin IP, O’Neill SA (2002) Spectral and photocatalytic characteristics of TiO2 CVD films on quartz. Photochem Photobiol Sci 1:865–868

    Article  Google Scholar 

  122. Pazoki M, Taghavinia N, Abdi Y, Tajabadi F, Boschloo G, Hagfeldt A (2012) CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells. RSC Adv 2:12278–12285

    Article  Google Scholar 

  123. Manolea AV, Dobromirb M, Gıˆrtanc M, Mallet R, Rusua G, Lucaa D (2013) Optical properties of Nb-doped TiO2 thin films prepared by sol–gel method. Ceram Int 39:4771–4776

    Article  Google Scholar 

  124. Liu J, Zhao X, Duan L, Cao M, Sun H, Shao J, Chen S, Xie H, Chang X, Chen C (2011) Influence of annealing process on conductive properties of Nb-doped TiO2 polycrystalline films prepared by sol–gel method. Appl Surf Sci 257:10156–10160

    Article  Google Scholar 

  125. Malengreaux CM, Timmermans A, Pirard SL, Lambert SD, Pirard J-P, Poelman D, Heinrichs B (2012) Optimized deposition of TiO2 thin films produced by a non-aqueous sol–gel method and quantification of their photocatalytic activity. Chem Eng J 195–196:347–358

    Article  Google Scholar 

  126. Sharma SK, Vishwas M, Rao NK, Mohan S, Reddy SD, Gowda KVA (2009) Structural and optical investigations of TiO2 films deposited on transparent substrates by sol–gel technique. J Alloys Compd 471:244–247

    Article  Google Scholar 

  127. Wen T, Gao J, Shen J, Zhou Z (2001) Preparation and characterization of TiO2 thin films by sol–gel process. J Mater Sci 36:5923–5926. doi:10.1023/A:1012989012840

    Article  Google Scholar 

  128. Gusmano G, Montesperelli G, Nunziante P, Traversa E, Montenero A, Braghini M, Mattogno G, Bearzotti A (1993) Humidity-sensitive properties of titania films prepared using the sol–gel process. J Ceram Soc Jpn 101:1095–1100

    Article  Google Scholar 

  129. Tai W-P, Oh J-H (2002) Fabrication and humidity properties of nanostructured TiO2–SnO2 thin films. Sens Actuators B 85:154–157

    Article  Google Scholar 

  130. Avellaneda CO, Pawlick A (1998) Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films 335:245–248

    Article  Google Scholar 

  131. Oja I, Mere A, Krunks M, Solterbeck C-H, Es-Souni M (2004) Properties of TiO2 films prepared by the spray pyrolysis method. Solid State Phenom 99–100:259–264

    Article  Google Scholar 

  132. Negishi N, Takeuchi K, Ibusuki T (1998) Surface structure of the TiO2 thin film photocatalyst. J Mater Sci 33:5789–5794. doi:10.1023/A:1004441829285

    Article  Google Scholar 

  133. Bashir A, Wöbkenberg PH, Smith J, Ball JM, Adamopoulos G, Bradley DDC, Thomas D (2009) Anthopoulos high-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv Mater 21:2226–2231

    Article  Google Scholar 

  134. Abou-Helal MO, Seeber WT (2002) Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. Appl Surf Sci 195:53–62

    Article  Google Scholar 

  135. Ayieko CO, Musembi RJ, Waita SM, Aduda BO, Jain PK (2012) Structural and optical characterization of nitrogen-doped TiO2 thin films deposited by spray pyrolysis on fluorine doped tin oxide (FTO) coated glass slides. J Energy Eng 2(3):67–72

    Google Scholar 

  136. Comini E, Guidi V, Ferroni M, Sberveglieri G (2004) TiO2:Mo, MoO3:Ti, TiO + WO3 and TiO: W layer for landfill produced gases sensing. Sens Actuators B100:41–46

    Article  Google Scholar 

  137. Comini E, Sberveglieri G, Guidi V (2000) Ti–W–O sputtered thin film as n- or p-type gas sensors. Sens Actuators B 70:108–114

    Article  Google Scholar 

  138. Galatsis K, Li YX, Wlodarski W, Comini E, Sberveglieri G, Cantalini C, Santucci S, Passacantando M (2002) Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors. Sens Actuators B 83:276–280

    Article  Google Scholar 

  139. Ferroni M, Guidi V, Martinelli G, Comini E, Sberveglieri G, Boscarino D, Della G (2000) Electron microscopy and Rutherford backscattering study of nucleation and growth in nanosized W–Ti–O thin films. J Appl Phys 88:1097

    Article  Google Scholar 

  140. Ferroni M, Guidi V, Martinelli G, Nelli P, Sberveglieri G (1997) Gas sensing applications of W–Ti–O-based nanosized thin films prepared by r.f. reactive sputtering. Sens Actuators B 44:499–502

    Article  Google Scholar 

  141. Gerlicha M, Kornely S, Fleischer M, Meixner H, Kassing R (2003) Selectivity enhancement of a WO3/TiO2 gas sensor by the use of a four-point electrode structure. Sens Actuators B 83:503–508

    Article  Google Scholar 

  142. Yamada Y, Seno Y, Masuoka Y, Nakamura T, Yamashita K (2000) NO2 sensing characteristic of Nb doped TiO2 thin films and their electronic properties. Sens Actuators B 66:164–166

    Article  Google Scholar 

  143. Zakrzewska K, Radecka M, Rekas M (1997) Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Films 310:161–166

    Article  Google Scholar 

  144. Ruiz A, Dezanneau G, Arbiol J, Cornet A, Morante JR (2003) Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Films 436:90–94

    Article  Google Scholar 

  145. Oyabu T (1982) Sensing characteristics of SnO2 thin film gas sensors. J Appl Phys 53:2785

    Article  Google Scholar 

  146. Das S, Kim SH, Park YK, Choi CM, Kim DY, Hahn YB (2010) Heterojunction bipolar assembly with Cr x Ti1−x O2 thin films and vertically aligned ZnO nanorods. Mater Chem Phys 124:704–708

    Article  Google Scholar 

  147. Ruiz A, Cornet A, Sakai G, Shimanoe K, Morante JR, Yamazoe N (2002) Preparation of Cr-doped TiO2 thin film of p-type conduction for gas sensor application. Chem Lett 9:892–893

    Article  Google Scholar 

  148. Liau LCK, Lin C-C (2008) Semiconductor characterization of Cr3+-doped titania electrodes with p–n homojunction devices. Thin Solid Films 516:1998–2002

    Article  Google Scholar 

  149. Domaradzki J, Kaczmarek D (2008) Electrical and optical properties of TOS–S heterojunction devices. Thin Solid Films 516:1473–1475

    Article  Google Scholar 

  150. Mowbray DJ, Martinez JI, García Lastra JM, Thygesen KS, Jacobsen KW (2009) Stability and electronic properties of TiO2 nanostructures with and without B and N doping. J Phys Chem C 113:12301–12309

    Article  Google Scholar 

  151. Zhang Z-F, Deng Z-B, Liang C-J, Zhang M-X, Xu D-H (2003) Organic light-emitting diodes with a nanostructured TiO2 layer at the interface between ITO and NPB layers. Displays 24:231–234

    Article  Google Scholar 

  152. Haque SA, Koops S, Tokmoldin N, Durrant JR, Huang J, Bradley DDC, Palomares E (2007) A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode. Adv Mater 19:683–687

    Article  Google Scholar 

  153. Könenkamp R, Word RC, Godinez M (2006) Electroluminescence in nanoporous TiO2 solid-state heterojunctions. Nanotechnology 17:1858

    Article  Google Scholar 

  154. Hou L, Liu P, Li Y, Wu C (2009) Enhanced performance in organic light-emitting diodes by sputtering TiO2 ultra-thin film as the hole buffer layer. Thin Solid Films 517:4926–4929

    Article  Google Scholar 

  155. Aziz THT, Salleh MM, Yahaya M (2007) Reduction of turn-on voltage in polymer organic light-emitting diode using nanoparticles TiO2 thin film as a hole injection layer. Solid State Sci Technol 15:75–83

    Google Scholar 

  156. Bally A, Korobeinikova EN, Schmid PE, Levy F, Bussy F (1998) Structural and electrical properties of Fe-doped TiO2 thin films. J Phys D Appl Phys 31:1149–1154

    Article  Google Scholar 

  157. Li Y, Wlodarski W, Galatsis K, Moslih S, Cole J, Russo S, Rockelmann N (2002) Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sens Actuators B 83:160–163

    Article  Google Scholar 

  158. Ruiz A, Sakai G, Cornet A, Shimanoe K, Morante J, Yamazoe N (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B 93:509–518

    Article  Google Scholar 

  159. Salvador P (1984) Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis. J Appl Phys 55:2977

    Article  Google Scholar 

  160. Li Z, Ding D, Ning C (2013) p-type hydrogen sensing with Al- and V-doped TiO2 nanostructures. Nanoscale Res Lett 8:25

    Article  Google Scholar 

  161. Sieradzka K, Mazur M, Wojcieszak D, Domaradzki J, Kaczmarek D, Prociow E (2012) p-type transparent Ti–V oxides semiconductor thin film as a prospective material for transparent electronics. Thin Solid Films 520:3472–3476

    Article  Google Scholar 

  162. Sieradzka K, Domaradzki J, Prociow E, Mazur M, Lapinski M (2009) Properties of Nanocrystalline TiO2: V thin films as a transparent semiconducting oxide. Acta Phys Pol A 116:S33–S35

    Google Scholar 

  163. Prociow EL, Sieradzka K, Domaradzki J, Kaczmarek D, Mazur M (2009) Thin films based on nanocrystalline TiO2 for transparent electronics. Acta Phys Pol A 116:S72–S74

    Google Scholar 

  164. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid Stat Chem 32:33–177

    Article  Google Scholar 

  165. Cromer DT, Herrington K (1955) The structure of anatase and rutile. J Am Chem Soc 77:4708–4709

    Article  Google Scholar 

  166. Baur VWH (1961) Atomabstande und binungswinkel im brookit, TiO2. Acta Cryst 14:214–216

    Article  Google Scholar 

  167. Mo S-D, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023

    Article  Google Scholar 

  168. Avaraham S, Kaplan WD (2005) Reactive wetting of rutile by liquid aluminium. Mater Sci 40:1093–1100

    Article  Google Scholar 

  169. Thompson TL, Yates JT Jr (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 196:4428–4453

    Article  Google Scholar 

  170. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  Google Scholar 

  171. Norotsky A, Jamieson JC, Kleppa OJ (1967) Enthalpy of transformation of a high pressure polymorph of titanium dioxide to the rutile modification. Science 158:338–339

    Google Scholar 

  172. Zhang Q, Gao L, Guo J (2000) Preparation of plasma sprayed titania/hydroxyapatite photocatalytic coatings with nanostructured powder. Appl Catal B 26:207–215

    Article  Google Scholar 

  173. Sclafani A, Palmisano L, Schiavello M (1990) Influence of the preparation methods of TiO, on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 94:829–832

    Article  Google Scholar 

  174. Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65:224112

    Article  Google Scholar 

  175. Tanaka Keiichi, Capule Mario FV, Hisanaga Teruaki (1991) Effect of crystallinity of TiO2 on is photocatalytic action. Appl Phys Lett 187:73–76

    Google Scholar 

  176. Selloni A (2008) Crystal growth: anatase shows its reactive side. Nat Mater 7:613–615

    Article  Google Scholar 

  177. Yang HG, Sun CH, Qiao SZ, Zhou J, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638

    Article  Google Scholar 

  178. Wunderlich W, Oekermann T, Miao L, Nguyen TH, Tanemura S, Tanemura M (2004) Electronic properties of nanoporous TiO2- and ZnO thin films—comparison of simulations and experiments. J Ceram Process Res 5:343

    Google Scholar 

  179. Paxton AT, Thien-Nga L (1998) Electronic structure of reduced titanium dioxide. Phys Rev B 57:1579

    Article  Google Scholar 

  180. Bellingham JR, Phillips WA, Adkins CJ (1992) Intrinsic performance limits in transparent conducting oxides. J Mater Sci Lett 11:263–265

    Article  Google Scholar 

  181. Bassi AL, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys 98:074305

    Article  Google Scholar 

  182. Hardcastle FD (2011) Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J Ark Acad Sci 65:43–48

    Google Scholar 

  183. Šćepanović MJ, Grujić-Brojčin M, Dohčević-Mitrović ZD, Popović ZV (2009) Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy. Sci Sinter 41:67–73

    Article  Google Scholar 

  184. Narayanan PS (1950) The Raman spectrum of beryllium silicate. Proc Indian Acad Sci A 32(4):279–283

    Google Scholar 

  185. Balachandran U, Eror NG (1982) Raman spectrum of titanium dioxide. J Solid State Chem 42:276–282

    Article  Google Scholar 

  186. Ohsaka T (1980) Temperature dependence of the Raman spectrum in anatase TiO2. J Phys Soc Jpn 48:1661–1668

    Article  Google Scholar 

  187. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  Google Scholar 

  188. Gonzalez RJ (1996) Raman, infrared, X-ray, and EELS studies of nanophase titania. PhD thesis, Virginia Polytechnic Institute and State University

  189. Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) The Raman spectrum of brookite, TiO2 (PbCa, z = 8). J Raman Spectrosc 26:57–62

    Article  Google Scholar 

  190. Li JG, Ishigaki T, Sun X (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111:4969–4976

    Article  Google Scholar 

  191. Iliev MN, Hadjiev VG, Litvinchuk AP (2013) Raman and infrared spectra of brookite (TiO2): experimental and theory. Vib Spectrosc 64:148–152

    Article  Google Scholar 

  192. Hu W, Li L, Li G, Tang C, Sun L (2009) High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Des 9:3676–3682

    Article  Google Scholar 

  193. Triebold S, Luvizotto GL, Tolosana-Delgado R, Zack T, Eynatten HV (2011) Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contrib Mineral Petrol 161:581–596

    Article  Google Scholar 

  194. Paola AD, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3:36–73

    Article  Google Scholar 

  195. Hu Y, Tsai H-L, Huang C-L (2003) Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. J Eur Ceram Soc 23:691–696

    Article  Google Scholar 

  196. Rezaee M, Khoie S, Liu H (2011) The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: an XRD and Raman spectroscopy investigation. Cryst Eng Commun 13:5055–5061

    Article  Google Scholar 

  197. Kelly S, Pollak FH, Tomkiewicz M (1997) Raman spectroscopy as a morphological probe for TiO2 aerogels. J Phys Chem B 101:2730–2734

    Article  Google Scholar 

  198. Bersani D, Lottici PP (1998) Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett 72:73–75

    Article  Google Scholar 

  199. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916

    Article  Google Scholar 

  200. Choi HC, Mee JY, Bin KS (2004) Characterization of Raman spectra of size-selected TiO2 nanoparticles by two-dimensional correlation spectroscopy. Bull Korean Chem Soc 25:426–428

    Article  Google Scholar 

  201. Turković A, Ivanda M, Popović S, Tonejc A, Gotić M, Dubček P, Musić S (1997) Comparative Raman, XRD, HRTEM and SAXS studies of grain sizes in nanophase TiO2. J Mol Struct 410–411:271–273

    Google Scholar 

  202. Gotić M, Ivanda M, Popović S, Musić S, Sekulić A, Turković A, Furić K (1997) Raman investigation of nanosized TiO2. J Raman Spectrosc 28:555–558

    Article  Google Scholar 

  203. Musić S, Gotić M, Ivanda M, Popović S, Turković A, Trojko R, Sekulić A, Furić K (1997) Chemical and microstructural properties of TiO2 synthesized by sol–gel procedure. Mater Sci Eng B 47:33–40

    Article  Google Scholar 

  204. Taga N, Odaka H, Shigesato Y, Yasui M Kamei, Haynes TE (1996) Electrical properties of heteroepitaxial grown tin-doped indium oxide films. J Appl Phys 80:978–984

    Article  Google Scholar 

  205. Bender M, Trube J, Stollenwerk J (1999) Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology. Thin Solid Films 354:100–105

    Article  Google Scholar 

  206. Minami T (2000) New n-type transparent conducting oxides MRS Bull. 25:38–44

    Google Scholar 

  207. Kikuchi N, Kusano E, Nanto H, Kinbara A, Hosono H (2000) Phonon scattering in electron transport phenomena of ITO films. Vacuum 59:492–499

    Article  Google Scholar 

  208. Ellmer K (2001) Resistivity of polycrystalline zinc oxide films: current status and physical limit. J Phys D Appl Phys 34:3097–3108

    Article  Google Scholar 

  209. Odaka H, Shigesato Y, Murakani T, Iwata S (2001) Electronic structure analyses of Sn-doped In2O3. Jpn J Appl Phys 40:3231–3235

    Article  Google Scholar 

  210. Thangaraju B (2002) Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films 402:71–78

    Article  Google Scholar 

  211. Lee H-C, Park OO (2004) Behaviours of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various flow rates. Vacuum 77:69–77

    Article  Google Scholar 

  212. Lee H-C, Park OO (2004) Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity. Vacuum 75:275–282

    Article  Google Scholar 

  213. Shigesato Y, Paine DC (1993) Study of the effect of Sn doping on the electronic transport properties of thin indium oxide. Appl Phys Lett 62:1268–1270

    Article  Google Scholar 

  214. Bunstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633

    Article  Google Scholar 

  215. Moss TS (1954) The interpretation of the properties of indium antimonide. Proc Phys Soc Lond B 67:775–782

    Article  Google Scholar 

  216. Granqvist CG (1991) Oxide-based electrochromic materials and devices prepared by magnetron sputtering (chapter 5), vol 106. Pergamon, Oxford

    Google Scholar 

  217. Shirakata S, Sakemi T, Awai K, Yamamoto T (2006) Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition. Superlattices Microstruct 39:218–228

    Article  Google Scholar 

  218. Ilican S, Caglar Y, Caglar M, Yakuphanoglu F (2008) Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process. Appl Surf Sci 255:2353–2359

    Article  Google Scholar 

  219. Wu X, Dhere RG, Zhou J, Duda A, Perkins C, Yan Y, Moutinho HR (2003) 3rd World conference on photovoltaic energy conversion, Osako, Japan, May 11–18

  220. Grant FA (1959) Properties of rutile (titanium oxide). Rev Mod Phys 31:646

    Article  Google Scholar 

  221. Furubayashi Y, Hitosugi T, Hasegawa T (2006) Response to “Comment on ‘A transparent metal: Nb-doped anatase TiO2 [Appl. Phys. Lett. 86, 252101 (2005)]”. Appl Phys Lett 88:226103

    Article  Google Scholar 

  222. Zhang SX, Kundaliya DC, Yu W, Dhar S, Young SY, Salamanca-Riba LG, Ogale SB, Vispute RD, Venkatesan T (2007) Nb doped TiO2: intrinsic transparent metallic anatase versus highly resistive rutile phase. J Appl Phys 102:013701

    Article  Google Scholar 

  223. Cronemeyer DC (1952) Electrical and optical properties of rutile single crystals. Phys Rev 87:876

    Article  Google Scholar 

  224. Berger H, Tang H, Lévy F (1993) Growth and Raman spectroscopic characterization of TiO2 anatase single crystals. J Cryst Growth 130:108–112

    Article  Google Scholar 

  225. Forro L, Chauvet O, Emin D, Zuppiroli Z, Berger H, Lévy F (1994) High mobility n-type charge-carriers in large single-crystals of anatase (TiO2). J Appl Phys 75:633–635

    Article  Google Scholar 

  226. Mulmi DD, Sekiya T, Kamiya N, Kurita S, Murakami Y, Kodaira T (2004) Optical and electrical properties of Nb-doped anatase single crystals. J Phys Chem Solids 65:1181–1185

    Article  Google Scholar 

  227. Chambers SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39:105–180

    Article  Google Scholar 

  228. Maghanga CM, Niklasson GA, Granqvist CG (2009) Optical properties of sputter deposited transparent and conducting TiO2: Nb films. Thin Solid Films 518:1254–1258

    Article  Google Scholar 

  229. Welte A, Waldauf C, Brabec C, Wellmann P (2008) Application of optical for the investigation of electronic and structural properties of sol–gel processed TiO2 films. Thin Solid Films 516:7256–7259

    Article  Google Scholar 

  230. Monllor-Satoca D, Gomez R, González-Hidalgo M, Salvador P (2007) The “diret-indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255

    Article  Google Scholar 

  231. Valencia S, Marin JM, Restrepo G (2010) Study of the band gap of synthesized titanium dioxide nanoparticles using the sol–gel method and hydrothermal treatment. TOMSJ 4:9–14

    Google Scholar 

  232. Kalathil S, Khan MM, Banerjee AN, Lee J, Cho MH (2012) A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanopart Res 14:1051

    Article  Google Scholar 

  233. Reddy K, Manorama S, Redd A (2002) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245

    Article  Google Scholar 

  234. Zallen R, Moret MP (2006) The optical absorption edge of brookite TiO2. Solid State Commun 137:154–157

    Article  Google Scholar 

  235. Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 16:772–775

    Google Scholar 

  236. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  237. Kayanuma Y (1988) Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B Condens Matter 38:9797–9805

    Article  Google Scholar 

  238. Schoenhalz AL, Dalpian GM (2013) Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods. Phys Chem Chem Phys 15:15863–15868

    Article  Google Scholar 

  239. Haranath D, Sahai S, Joshi AG, Gupta BK, Shanker V (2009) Investigation of confinement effects in ZnO quantum dots. Nanotechnology 20:425701

    Article  Google Scholar 

  240. Deng H-X, Li S-S, Li J (2010) Quantum confinement effects and electronic properties of SnO2 quantum wires and dots. J Phys Chem C 114:4841–4845

    Article  Google Scholar 

  241. Sahana MB, Sudakar C, Dixit A, Thakur JS, Naik R, Naik VM (2012) Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix. Acta Mater 60:1072–1078

    Article  Google Scholar 

  242. Banerjee AN, Joo SW, Min B-K (2012) Quantum size effect in the photoluminescence properties of p-type semiconducting transparent CuAlO2 nanoparticles. J Appl Phys 112:114329

    Article  Google Scholar 

  243. Banerjee AN, Chattopadhyay KK (2005) Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films. J Appl Phys 97:084308

    Article  Google Scholar 

  244. Hmiel A, Xue Y (2012) Quantum confinement and surface relaxation effects in rutile TiO2 nanowires. Phys Rev B 85:235461

    Article  Google Scholar 

  245. Peng H, Li J (2008) Quantum confinement and electronic properties of rutile TiO2 nanowires. J Phys Chem C 112:20241–20245

    Article  Google Scholar 

  246. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11

    Article  Google Scholar 

  247. Drbohlavova J, Vorozhtsova M, Hrdy R, Kizek R, Salyk O, Hubalek J (2012) Self-ordered TiO2 quantum dot array prepared via anodic oxidation. Nanoscale Res Lett 7:123

    Article  Google Scholar 

  248. Weng Z, Guo H, Liu X, Wu S, Yeung KWK, Chu PK (2013) Nanostructured TiO2 for energy conversion and storage. RSC Adv 3:24758–24775

    Article  Google Scholar 

  249. Church CP, Muthuswamy E, Zhai G, Kauzlarich SM, Carter SA (2013) Quantum dot Ge/TiO2 heterojunction photoconductor fabrication and performance. Appl Phys Lett 103:223506

    Article  Google Scholar 

  250. Khan AF, Mehmood M, Aslam M, Shah SI (2010) Nanostructured multilayer TiO2–Ge films with quantum confinement effects for photovoltaic applications. J Colloid Interface Sci 343:271–280

    Article  Google Scholar 

  251. Hao YZ, Chun TC, Shan FS (2001) Optical absorption of sol–gel derived ZnO/TiO2 nanocomposite films. Chin Phys Lett 18:1520–1522

    Article  Google Scholar 

  252. Banerjee AN, Ghosh CK, Chattopadhyay KK (2005) Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films. Sol Energy Mater Sol Cells 89:75–83

    Article  Google Scholar 

  253. Kofstad P (1972) Nonstoichiometry, diffusion and electrical conductivity of binary metal oxides. Wiley, New York

    Google Scholar 

  254. Lin H, Kozuka H, Yoko T (2000) Electrical properties of transparent doped oxide films. J Sol Gel Sci Technol 19:529–532

    Article  Google Scholar 

  255. Nowotny J, Sorrell CC, Sheppard LR, Bak T (2005) Solar-hydrogen: environmental safe fuel for the future. Int J Hydrogen Energy 30:521–544

    Article  Google Scholar 

  256. Nowotny J, Sorrell CC, Bak T, Sheppard LR (2005) Materials for energy conversion devices. Woodhead Publishing, Cambridge, pp 84–116

    Book  Google Scholar 

  257. Nowotny MK, Bak T, Nowotny J, Sorrell CC (2005) Titanium vacancies in nonstoichiometric TiO2 single crystal. Phys Status Solid B 242:R88–R90

    Article  Google Scholar 

  258. Bak T, Nowotny J, Rekas M, Sorrell CC (2003) Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium. J Phys Chem Solids 64:1043–1056

    Article  Google Scholar 

  259. Bak T, Nowotny J, Rekas M, Sorrell CC (2003) Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. J Phys Chem Solids 64:1057–1067

    Article  Google Scholar 

  260. Sheppard LR, Bak T, Nowotny J (2006) Electrical properties of niobium doped titanium dioxide I. Defect disorder. J Phys Chem B 110:22447–22454

    Article  Google Scholar 

  261. Bak T, Nowotny J, Nowotny MK, Sheppard LR (2007) Defect chemistry of titanium dioxide effect of interfaces. J Aust Ceram Soc 43:49–55

    Google Scholar 

  262. Chen PC, Shen GZ, Chen H (2009) High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. ACS Nano 3:3383–3390

    Article  Google Scholar 

  263. Chen P, Shen GZ, Sukcharoenchoke S, Zhou CW (2009) Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl Phys Lett 94:043113

    Article  Google Scholar 

  264. Shen GZ, Xu J, Wang XF, Huang HT, Chen D (2011) Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. Adv Mater 23:771–775

    Article  Google Scholar 

  265. Shen GZ, Liang B, Wang XF, Huang HT, Chen D, Wang ZL (2011) Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behaviour and transparent thin-film transistor applications. ACS Nano 5:6148–6155

    Article  Google Scholar 

  266. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ (2011) General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. ACS Nano 5:2647–2656

    Article  Google Scholar 

  267. Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A (2011) Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles. Langmuir 27:3275–3278

    Article  Google Scholar 

  268. Wang R, Hashimoto K, Fujishima A (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  Google Scholar 

  269. Yuwono AH, Xue J, Wang J (2003) Transparent nano hybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behaviour. J Mater Chem 13:1475–1479

    Article  Google Scholar 

  270. Nakato Y, Kai K, Kawabe K (1995) Improvement of characteristics of new-type solar cells, having a transparent conductor/thin SiO2 layer with ultrafine metal particles as conductive channels/n-Si junction. Sol Energy Mater Sol Cells 37:323–335

    Article  Google Scholar 

  271. Minami T, Takata S, Kakumu T (1996) New multicomponent transparent conducting oxide films for transparent electrodes of flat panel displays. J Vac Sci Technol A 14:1704–1708

    Article  Google Scholar 

  272. Yanagawa K, Ohki Y, Omata T, Hosono H, Ueda N, Kawazoe H (1994) Preparation of Cd1−x Y x Sb2O6 thin film on glass substrate by radio frequency sputtering. Appl Phys Lett 65:406–408

    Article  Google Scholar 

  273. Dong Y, Chao J, Xie Z, Xu X, Wang Z, Chen D (2012) Highly ordered TiO2 macropore arrays as transparent photocatalysts. J Nanomater. doi:10.1155/2012/762510

    Google Scholar 

  274. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272

    Article  Google Scholar 

  275. Ueno K, Inoue IH, Akoh H, Kawasaki M, Tokura Y, Takagi H (2003) Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator. Appl Phys Lett 83:1755

    Article  Google Scholar 

  276. Shibuya K, Ohnishi T, Kawasaki M, Koinuma H, Lippmaa M (2004) Single crystal SrTiO3 field-effect transistors with an atomically flat amorphous CaHfO3 gate insulator. Appl Phys Lett 85:425

    Article  Google Scholar 

  277. Ueno K, Inoue IH, Yamada T, Akoh H, Tokura Y, Takagi H (2004) Field-effect transistor based on KTaO3 perovskite. Appl Phys Lett 84:3726

    Article  Google Scholar 

  278. Shen G, Chen PC, Ryu K, Zhou C (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19:828–839

    Article  Google Scholar 

  279. Odobel F, Pleux LL, Pellegrin Y, Blart E (2010) New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc Chem Res 43:1063–1071

    Article  Google Scholar 

  280. Ruiz A, Cornet A, Sakai G, Shimanoe K, Morante JR, Yamazoe N (2002) Preparation of Cr-doped TiO2 thin film of P-type conduction for gas sensor application. Chem Lett 31:892–893

    Article  Google Scholar 

  281. Sobajima Y, Kato S, Matsuura T, Toyama T, Okamoto H (2007) Study of the light-trapping effects of textured ZnO:Al/glass structure TCO for improving photocurrent of a-Si: H solar cells. J Mater Sci Mater Electron 18:159–162

    Article  Google Scholar 

  282. Das S, Kim JH, Park YK, Hahna YB (2011) Solution processed Ni-doped TiO2 p-type channel in field effect transistor assemble with <10 nm thin Ba0.5Sr0.5TiO3 dielectric layer. Appl Phys Lett 98:202102

    Article  Google Scholar 

  283. Das S, Liu D, Park JB, Hahn YB (2013) Metal-ion doped p-type TiO2 thin films and their applications for heterojunction devices. J. Alloys Compd 553:188–193

    Article  Google Scholar 

  284. Sarkar D, Ghosh CK, Mukherjee S, Chattopadhyay KK (2013) Three dimensional Ag2O/TiO2 type-II (pn) nanoheterojunctions for superior photocatalytic activity. ACS Appl Mater Interfaces 5:331–337

    Article  Google Scholar 

  285. O’Regan Grätzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  286. Liu H, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H (2010) Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct 48:458–484

    Article  Google Scholar 

  287. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M (1993) Conversion of light to electricity by cis-X2(dcbpy)2Ru(II) CT sensitizers on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Article  Google Scholar 

  288. Tamura K, Nakahara K, Sakai M, Nakagawa D, Ito N, Sonobe M, Takasu H, Tampo H, Fons P, Matsubara K, Iwata K, Yamada A, Niki S (2004) InGaN-based light-emitting diodes fabricated with transparent Ga-doped ZnO as ohmic p-contact. Phys Status Solid 201:2704–2707

    Google Scholar 

  289. Smestad G, Bignozzi C, Argazzi R (1994) Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies. Sol Energy Mater Sol Cell 32:259–272

    Article  Google Scholar 

  290. Rani S, Mehra RM (2009) ZnO solid-state dye sensitized solar cells using composite electrolyte of poly(3-hexylthiophene-2,5-diyl) and carbon nanotubes. J Renew Sustain Energy 1:033109–033112

    Article  Google Scholar 

  291. Pradhan B, Batabyal SK, Pal AJ (2007) Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitizes solar cells. Sol Energy Mater Sol Cells 91:769–773

    Article  Google Scholar 

  292. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153

    Article  Google Scholar 

  293. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075

    Article  Google Scholar 

  294. Karthikeyan CS, Thelakkat M (2008) Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorg Chim Acta 361:635–655

    Article  Google Scholar 

  295. Suzuki I, Ohtomo A, Tsukazaki A, Sato F, Nishii J, Ohno H, Kawasaki M (2004) Hall and field‐effect mobilities of electrons accumulated at a lattice‐matched ZnO/ScAlMgO4 heterointerface. Adv Mater 16:1887–1890

    Article  Google Scholar 

  296. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184

    Article  Google Scholar 

  297. Lee K, Kirchgeorg R, Schmuki P (2014) Role of transparent electrodes for high efficiency TiO2 nanotube based dye-sensitized solar cells. J Phys Chem C 118:16562–16566

    Article  Google Scholar 

  298. Suzuki I, Ohtomo A, Tsukazaki A, Sato F, Nishii J, Ohno H, Kawasaki M (2004) Hall and field-effect mobilities of electrons accumulated at a lattice-matched ZnO/ScAlMgO4 heterointerfaces. Adv M ater 16:1887–1890

    Article  Google Scholar 

  299. Chang IF (1976) Electrochromic and electrochemichromic materials and phenomena. In: Proceedings of the 4th Brown Boveri symposium on nonemissive electrooptic displays, pp 155–196

  300. Oi T (1986) Electrochromic materials. Annu Rev Mater Sci 16:185–201

    Article  Google Scholar 

  301. Hotchandani S, Bedja I, Fessenden R, Kamat P (1994) Electrochromic and photoelectrochromic behaviour of thin WO3 films prepared from quantum size colloidal particles. Langmuir 10:17–22

    Article  Google Scholar 

  302. Deepa M, Sharma N, Varshney P, Varma SP, Agnihotry SA (2000) FTIR investigations of solid precursor materials for sol–gel deposition of WO3 based electrochromic films. J Mater Sci 35:5313–5318. doi:10.1023/A:1004838627252

    Article  Google Scholar 

  303. Agnihotry SA, Sharma N, Deepa M (2002) Ion exchange precursor materials for deposition of WO3 electrochromic films. J Sol Gel Sci Technol 24:265–270

    Article  Google Scholar 

  304. Granqvist CG (1992) Electrochromism and smart window design. Solid State Ion 53–56:479–489

    Article  Google Scholar 

  305. Reichman B, Bard AJ (1980) Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions. J Electrochem Soc 127:241–242

    Article  Google Scholar 

  306. Schmitt M, Heusing S, Aegerter MA, Pawlicka A, Avellaneda C (1998) Electrochromic properties of Nb2O5 sol–gel coatings. Sol Energy Mater Sol Cells 54:9–17

    Article  Google Scholar 

  307. Avellaneda CO, Pawlicka A, Aegerter MA (1998) Two methods of obtaining sol–gel Nb2O5 thin films for electrochromic devices. J Mater Sci 33:2181–2185. doi:10.1023/A:1004339723987

    Article  Google Scholar 

  308. Pawlicka A, Atik M, Aegerter MA (1997) Synthesis of multicolor Nb2O5 coatings for electrochromic devices. Thin Solid Films 301:236–241

    Article  Google Scholar 

  309. Pawlicka A, Atik M, Aegerter MA (1995) Synthesis of Nb205 thin films for electrochromic devices. J Mater Sci Lett 14:1568–1570

    Article  Google Scholar 

  310. Faria RC, Bulhoes LOdS (1994) A novel synthetic route to NbJ-OS thin films for electrochromic devices. J Electrochem Soc 141:L29–L30

    Article  Google Scholar 

  311. Bell JM, Barczynska J, Evans LA, MacDonald KA, Wang J, Green DC, Smith GB (1994) Proceedings of SPIE: the international society for optical engineering, vol 2255, pp 324–331

  312. Kitao M, Oshima Y, Urabe K (1997) Preparation and electrochromism of RF-sputtered TiO2 films. Jpn J Appl Phys 36:4423–4426

    Article  Google Scholar 

  313. Yoshimura K, Miki T, Tanemura S (1997) TiO2 electrochromic thin films by reactive direct current magnetron sputtering. J Vac Sci Technol A 15:2673–2676

    Article  Google Scholar 

  314. Campus F, Bonhote P, Gratzel M, Heinen S, Walder L (1999) Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes. Sol Energy Mater Sol Cells 56:281–297

    Article  Google Scholar 

  315. Cinnsealach R, Boschloo G, Rao SN, Fitzmaurice D (1999) Colored electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol Energy Mater Sol Cells 57:107–125

    Article  Google Scholar 

  316. Wang Z, Hu X (1999) Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films 352:62–65

    Article  Google Scholar 

  317. Huang SY, Kavan L, Exnar I, Gratzel M (1995) Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J Electrochem Soc 142:L142–L144

    Article  Google Scholar 

  318. Cronemeyer DC (1959) Infrared absorption of reduced rutile single crystals. Phys Rev 113:1222–1226

    Article  Google Scholar 

  319. Hagfeldt A, Vlachopoulos N, Graetzel M (1994) Fast electrochromic switching with nanocrystalline oxide semiconductor films. J Electrochem Soc 141:L82–L84

    Article  Google Scholar 

  320. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722

    Article  Google Scholar 

  321. Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (anatase). 1. Chronoameromety on CVD films and nanoporous films. J Phys Chem B 101:7710–7716

    Article  Google Scholar 

  322. Ghicov A, Tsuchiya H, Hahn R, Macak JM, Munoz AG, Schmuki P (2006) TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem Commun 8:528–532

    Article  Google Scholar 

  323. Hahn R, Ghicov A, Tsuchiya H, Macak JM, Munoz AG, Schmuki P (2007) Lithium–ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. Phys Status Solid A 204:1281–1285

    Article  Google Scholar 

  324. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO x structures. Chem Commun 20:2791–2808

    Article  Google Scholar 

  325. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  Google Scholar 

  326. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  Google Scholar 

  327. Mor GK, Shankar K, Varghese OK, Grimes CA (2004) Photoelectrochemical properties of titania nanotubes. J Mater Res 19:2989–2996

    Article  Google Scholar 

  328. Sukamto JPH, Mcmillan CS, Smyrl W (1993) photoelectrochemical investigations of thin metal-oxide films-TiO2, Al2O3, and HfO2 on the parent metals. Electrochim Acta 38:15–27

    Article  Google Scholar 

  329. Sukamto JPH, Smyrl WH, Mcmillan CS, Kozlowski MR (1992) Photoelectrochemical measurements of thin oxide films: multiple internal reflection effects. J Electrochem Soc 139:1033–1043

    Article  Google Scholar 

  330. Hoffman P (2001) Tomorrow’s energy: hydrogen, fuel cells, and the prospects for a cleaner planet. Cambridge University, Cambridge

    Google Scholar 

  331. Chtristofides C, Mandelis A (1990) Solid-state sensors for trace hydrogen gas detection. J Appl Phys 68:R1–R30

    Article  Google Scholar 

  332. Ruths PF, Askok S, Fonash SJ, Ruths JM (1981) A study of Pd/Si MIS Schottky barrier diode hydrogen detector. IEEE Trans Electron Dev 28:1003–1009

    Article  Google Scholar 

  333. Schalwig J, Muller G, Karrer U, Eickhoff M, Ambacher O, Stutzmann M, Gorgens L, Dollinger G (2002) Hydrogen response mechanism of Pt–GaN Schottky diodes. Appl Phys Lett 80:1222–1224

    Article  Google Scholar 

  334. Roy S, Jacob C, Lang C, Basu S (2003) Studies on Ru/3C-SiC Schottky junctions for high temperature hydrogen sensors. J Electrochem Soc 150:H135–H139

    Article  Google Scholar 

  335. Cheng S-Y (2003) A hydrogen sensitive Pd/GaAs Schottky diode sensor. Mater Chem Phys 78:525–528

    Article  Google Scholar 

  336. Butler MA (1991) Optic sensor for hydrogen concentrations near the explosive limit. J Electrochem Soc 138:L46–L47

    Article  Google Scholar 

  337. Sekimoto S, Nakagawa H, Okazaki S, Fukuda K, Asakura S, Shigemori T, Takahashi S (2000) A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens Actuators B 66:142–145

    Article  Google Scholar 

  338. Sutapun B, Tabib-Azar M, Kazemi A (1999) Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens Actuators B 60:27–34

    Article  Google Scholar 

  339. Matsumiya M, Shin W, Izu N, Murayama N (2003) Nanostructured thin film Pt catalyst for thermoelectric hydrogen gas sensor. Sens Actuators B 93:309–315

    Article  Google Scholar 

  340. Katti VR, Debnath AK, Gadkari SC, Gupta SK, Sahni VC (2002) Passivated thick film catalytic type H2 operating at low temperature. Sens Actuators B 84:219–225

    Article  Google Scholar 

  341. Luo RX, Chen LH, Chen AF, Liu CC (1991) A novel catalytic sensor for monitoring the concentration of mixed combustible gases. Sci China Ser A 34:1500–1507

    Google Scholar 

  342. Maffei N, Kuriakose AK (1999) A hydrogen sensor based on a hydrogen ion conducting solid electrolyte. Sens Actuators B 56:243–246

    Article  Google Scholar 

  343. Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T (2001) A solid electrolyte hydrogen sensor with an electrochemically supplied hydrogen standard. Sens Actuators B 73:130–134

    Article  Google Scholar 

  344. Lu G, Miura N, Yamazoe N (1996) High temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens Actuators B 130:35–36

    Google Scholar 

  345. Miura N, Harada T, Shimizu Y, Yamazoe N (1990) Cordless solid-state hydrogen sensor using proton-conductor thick film. Sens Actuators B 1:125–129

    Article  Google Scholar 

  346. Lundstrom I, Shivaraman S, Svensson CS, Lundkvist L (1975) A hydrogen sensitive MOS field effect transistor. Appl Phys Lett 26:55–57

    Article  Google Scholar 

  347. Miura N, Harada T, Yoshida N, Shimizu Y, Yamazoe N (1995) Sensing characteristics of ISFET-based hydrogen sensor using proton-conductive thick film. Sens Actuators B 25:499–503

    Article  Google Scholar 

  348. Fomenko S, Gumenjuk S, Podlepetsky B, Chuvashov V, Safronkin G (1992) The influence of technological factors on the hydrogen sensitivity of mosfer sensors. Sens Actuators B 10:7–10

    Article  Google Scholar 

  349. Hyodo T, Nishida N, Shimizu Y, Egashir M (2002) Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sens Actuators B 83:209–215

    Article  Google Scholar 

  350. Chaudhary VA, Mulla IS, Vijayamohanan K (1999) Selective hydrogen sensing properties of surface functionalized tin oxide. Sens Actuators B 55:154–160

    Article  Google Scholar 

  351. Banerjee AN, Chattopadhyay KK (2008) Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of transparent nanoelectronics. Recent Pat Nanotechnol 2:41–68

    Article  Google Scholar 

  352. Banerjee AN, Chattopadhyay KK (2009) P-type transparent semiconducting delafossite CuAlO2+x thin film. Nova Science Publisher, New York

    Google Scholar 

  353. Zamharir SG, Ranjbar M, Salamati H (2014) Excimer laser treatment of TiO2/WO3 thin films for self-cleaning gasochromic applications: preparation and characterization. Sol Energy Mater Sol Cells 130:27–35

    Article  Google Scholar 

  354. Domaradzki J, Mazur M, Wojcieszak D, Kaczmarek D, Jedrzejak T (2015) Investigation of optical response of gasochromic thin film structures through modeling of their transmission spectra under presence of organic vapor. Acta Phys Pol A 127:1702–1705

    Article  Google Scholar 

  355. Domaradzki J, Prociow E, Kaczmarek D, Wojcieszak D, Gatner D (2009) Gasochromic effect in nanocrystalline TiO2 thin films doped with Ta and Pd. Acta Phys Pol A 116:S126–S128

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Grant NRF-2015-002423 of the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arghya Narayan Banerjee or Sang Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, V.C., Banerjee, A.N. & Joo, S.W. Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J Mater Sci 50, 7495–7536 (2015). https://doi.org/10.1007/s10853-015-9303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9303-7

Keywords

Navigation