Skip to main content
Log in

Structural and electrical properties of mechanically alloyed ZnO nanoceramic for NTC thermistor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple negative temperature coefficient (NTC) thermistor material ZnO has been synthesized by mechanical alloying. The structural and microstructural properties were investigated by X-ray diffraction and field emission scanning electron microscopy. The electrical properties have been investigated in the temperature and frequency range of 300–500 °C and 100 Hz–1 MHz, respectively. The synthesized sample shows typical NTC behavior in the studied temperature and frequency range. The suitability of the material for thermistor application was analyzed by Steinhart–Hart equations and different thermistor parameters like sensitivity, temperature coefficient of résistance, activation energy and stability factor were calculated. The variation of resistance with temperature follow an exponential behaviour and well matched with Steinhart–Hart equation. It shows the sensitivity (β) value of 8079.93 K and the capability of mechanically alloyed zinc oxide for NTC thermistor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Q. Ma, Q. Zhao, X. Jia, D. He, A. Chang, J. Mater. Sci.: Mater. Electron. 30, 11005–11010 (2019)

    CAS  Google Scholar 

  2. P. Sabia, M. Joannon, A. Picareli, A. Chinnici, R. Ragucci, Fuel 91, 238–245 (2012)

    Article  CAS  Google Scholar 

  3. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  4. A. Feteira, Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  5. K. Park, J.K. Lee, J. Alloys Compd. 475, 513–517 (2009)

    Article  CAS  Google Scholar 

  6. B. Zhang, Q. Zhao, A. Chang, X. Huang, J. Hou, P. Zhao, G. Ji, J. Alloys Compd. 581, 573–578 (2013)

    Article  CAS  Google Scholar 

  7. E.M. Logothetis, K.R. Laud, J.K. Park, U.S. Patent #4162631, 1977

  8. T. Matsuoka, Y. Matsuo, S. Hayakawa, U.S. Patent #4013592, 1976

  9. Y. Matsuo, S. Hayakawa, U.S. Patent #3962145, 1974

  10. U. Walter, U.S. Patent #4126583, 1977

  11. K.E. Schubert, U.S. Patent #3560410, 1969

  12. Y. Kawaguchi, T. Kineri, U.S. Patent #4952902, 1989

  13. N.P.M. Joseph Raj, N. Rao Alluri, A. Chandrasekar, G. Khandelwal, S. Jae Kim, Nano Energy 62, 103926 (2019)

    Google Scholar 

  14. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H. Kim, Nanotechnology 30, 392001 (2019)

    Article  CAS  Google Scholar 

  15. H. Jun, H. Seong, K. Cho, B.M. Moon, S. Kim, Ceram. Int. 35, 2797 (2009)

    Article  CAS  Google Scholar 

  16. M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, Thin Solid Films 515, 551 (2006)

    Article  CAS  Google Scholar 

  17. N. Sekine, C.H. Chou, W.L. Kwan, Y. Yang, Org. Electron. 10, 1473 (2009)

    Article  CAS  Google Scholar 

  18. S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35, 862 (2006)

    Article  CAS  Google Scholar 

  19. Y. Roig, S. Marre, T. Cardinal, C. Aymonier, Angew. Chem. Int. Ed. 50, 12071–12074 (2011)

    Article  CAS  Google Scholar 

  20. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  CAS  Google Scholar 

  21. H. Kim, A. Piqué, J. Horwitz, H. Murata, Z. Kafafi, C. Gilmore, D. Chrisey, Thin Solid Films 798, 377–378 (2000)

    Google Scholar 

  22. X. Sun, H. Zhang, Y. Liu, J. Guo, Z. Cheng, J. Adv. Ceram. 5, 329 (2016)

    Article  CAS  Google Scholar 

  23. H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, Biomaterials 32, 1906 (2011)

    Article  CAS  Google Scholar 

  24. L. Prasanna, V.R. Vijayaraghavan, Mater. Sci. Eng. C 77, 1027–1034 (2017)

    Article  Google Scholar 

  25. S.H. Yu, J. Yang, Y.T. Quian, M. Yoshimura, Chem. Phys. Lett. 361, 362–366 (2002)

    Article  CAS  Google Scholar 

  26. L. Guo, Y. Ji, H. Xu, J. Am. Chem. Soc. 124, 14864–14865 (2002)

    Article  CAS  Google Scholar 

  27. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430–4431 (2003)

    Article  CAS  Google Scholar 

  28. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mater. Chem. Phys. 78, 99–104 (2003)

    Article  Google Scholar 

  29. D. Mondelaers, G. Vanhoyland, H.D. Van den Rul, J. Haen, M.K. VanBael, J.J. Mullens, L.C. Van Poucke, Mater. Res. Bull. 37, 901–914 (2002)

    Article  CAS  Google Scholar 

  30. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, Int. J. Nano Biomater. 7, 140–149 (2017)

    Article  CAS  Google Scholar 

  31. S. Lee, S. Jeong, K. Dongjo, S. Hwang, M. Jeon, J. Moon, Superlattices Microstruct. 43, 330–333 (2008)

    Article  CAS  Google Scholar 

  32. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Nanotechnology 14, 11–15 (2003)

    Article  CAS  Google Scholar 

  33. S.C. Pillai, J.M. Kelly, D.E. McCormack, P.O. Brien, R.R. Ramesh, J. Mater. Chem. 13, 2586–2590 (2003)

    Article  CAS  Google Scholar 

  34. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, B. Sahoo, Mater. Chem. Phys. 221, 419–429 (2019)

    Article  CAS  Google Scholar 

  35. J. Gubicza, X-ray Line Profile Analysis in Material Science (IGI Global Publisher of Timely Knowledge, Hershey, 2014). https://doi.org/10.4018/978-1-4666-5852-3.ch003

    Book  Google Scholar 

  36. T. Das, B.K. Das, S.K.S. Parashar, K. Parashar, Bull. Mater. Sci. 40, 247–251 (2017)

    Article  CAS  Google Scholar 

  37. K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci. 26, 247–253 (2003)

    Article  CAS  Google Scholar 

  38. R.M. Alexander, H.C. Bennet-Clark, G. Croft, M.J. Fuller, J. Jancso, E. Kiraly, A. Jancso-Garbor, Nature 270, 585–586 (1977)

    Article  Google Scholar 

  39. B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K.S. Parashar, J. Mater. Sci.: Mater. Electron. 28, 15127–15134 (2017)

    CAS  Google Scholar 

  40. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Ceram. Int. 39, 5695–5704 (2013)

    Article  CAS  Google Scholar 

  41. K.A. Stella, K. Krishnankutty, in International Symposium on Physics and Technology of Sensors (2012), pp. 301–304

  42. C.L. Yuan, X.Y. Liu, Y. Yang, J.W. Xu, C.R. Zhou, in International Conference on Intelligent Computing and Integrated Systems (ICISS) 2010 (2010), pp. 445–448

  43. NTC thermistor design guide for discrete components & probes. Quality Thermistor. Inc

  44. Beta THERM Sensors Temperature solutions. NTC Thermistor theory, Finland

  45. G.M. Gouda, C.L. Nagendra, in Proceedings—ISPTS-1, 1st International Symposium on Physics and Technology of Sensors (2012), pp. 125–128

  46. C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Bull. Mater. Sci. 35, 425–431 (2012)

    Article  CAS  Google Scholar 

  47. E.A. De Vasconcelos, S.A. Khan, W.Y. Zhang, H. Uchida, T. Katsube, Sens. Actuators A 83, 167–171 (2000)

    Article  Google Scholar 

  48. G.M. Gouda, C.L. Nagendra, Sens. Actuators A 155, 263–271 (2009)

    Article  CAS  Google Scholar 

  49. C. Yuan, X. Liu, M. Liang, C. Zhou, H. Wang, Sens. Actuators A 167, 291–296 (2011)

    Article  CAS  Google Scholar 

  50. Z.P. Nenova, T.G. Nenov, IEEE Trans. Instrum. Meas. 58, 441–449 (2009)

    Article  Google Scholar 

  51. R.N. Jadhav, S.N. Mathad, V. Puri, Ceram. Int. 38, 5181–5188 (2012)

    Article  CAS  Google Scholar 

  52. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, J. Adv. Ceram. 2, 291–300 (2013)

    Article  CAS  Google Scholar 

  53. T.K. Roy, D. Sanyal, D. Bhowmick, A. Chakrabarti, Mater. Sci. Semicond. Process. 16, 332–336 (2013)

    Article  CAS  Google Scholar 

  54. R. Sagar, S. Madolappa, N. Sharanappa, R.L. Raibagkar, Mater. Chem. Phys. 140, 119–125 (2013)

    Article  CAS  Google Scholar 

  55. K.Y. Tsao, C.S. Tsai, C.Y. Huang, Surf. Coat. Technol. 205, S279–S285 (2010)

    Article  CAS  Google Scholar 

  56. H. Zhang, A. Chang, F. Guan, L. Zhao, Q. Zhao, J. Yao, X. Huang, Ceram. Int. 40, 7865–7872 (2014)

    Article  CAS  Google Scholar 

  57. X. Xiong, J. Xu, P. Zhao, L. Wang, L. Bian, F. Xu, J. Zhang, A. Chang, Ceram. Int. 40, 10505–10510 (2014)

    Article  CAS  Google Scholar 

  58. B. Zhang, Q. Zhao, A. Chang, H. Ye, S. Chen, Y. Wu, Ceram. Int. 40, 11221–11227 (2014)

    Article  CAS  Google Scholar 

  59. Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, W. Zhou, C. OuYang, J.G. Huang, J.C. Tong, J.H. Chu, Mater. Sci. Eng. B 185, 74–78 (2014)

    Article  CAS  Google Scholar 

  60. W. Kong, L. Chen, B. Gao, B. Zhang, P. Zhao, G. Ji, A. Chang, C. Jiang, Ceram. Int. 40, 8405–8409 (2014)

    Article  CAS  Google Scholar 

  61. S. Jagtap, S. Rane, S. Gosavi, U. Mulik, D. Amalnerkar, Sens. Actuators A 197, 166–170 (2013)

    Article  CAS  Google Scholar 

  62. J. Kang, J. Ryu, G. Han, J. Choi, W. Yoon, B. Hahn, J. Kim, C. Ahn, J.H. Choi, D. Park, J. Alloys Compd. 534, 70–73 (2012)

    Article  CAS  Google Scholar 

  63. B. Ii, Mater. Lett. 65, 836–839 (2011)

    Article  Google Scholar 

  64. S. Pb, J. Zhao, L. Li, Z. Gui, Sens. Actuators A 95, 46–50 (2001)

    Article  Google Scholar 

  65. D. Houivet, J. Bernard, J.M. Haussonne, J. Eur. Ceram. Soc. 24, 1237–1241 (2004)

    Article  CAS  Google Scholar 

  66. D. Saha, a Das Sharma, a Sen, H. Maiti, Mater. Lett. 55, 403–406 (2002)

  67. P. Umadevi, C.L. Nagendra, G.K.M. Thutupalli, Sens. Actuators A 39, 59–69 (1993)

    Article  CAS  Google Scholar 

  68. S. Jagtap, S. Rane, U. Mulik, D. Amalnerkar, Microelectron. Int. 24, 7–13 (2007)

    Article  Google Scholar 

  69. T. Nagai, M. Itoh, IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    Article  CAS  Google Scholar 

  70. O. Aleksic, B. Radojcci, R. Ramovi, in MIEL 2006—Proceedings (2006), pp. 619–622

  71. Introduction to NTCs: NTC Thermistor, Philips Components, CA

  72. S.G.E. Wissmar, M. Kolahdouz, Y. Yamamoto, B. Tillack, C. Vieider, J.Y. Andersson, H.H. Radamsson, in International Semiconductor Device Research Symposium (ISDRS) (2007), pp. 1–2

Download references

Acknowledgements

We thank Science and Engineering Research Board (SERB), Government of India, for providing financial support under Grant No. CRG/2019/003315 to carry out the research work of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BKD has synthesized materials and done the characterization and analysis part. TD has written the paper and also done some characterization. DD has helped in the material synthesis part.

Corresponding author

Correspondence to Tanushree Das.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B.K., Das, T. & Das, D. Structural and electrical properties of mechanically alloyed ZnO nanoceramic for NTC thermistor application. J Mater Sci: Mater Electron 34, 230 (2023). https://doi.org/10.1007/s10854-022-09670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09670-z

Navigation