Skip to main content
Log in

Fabrication of low-cost p-n heterostructure room temperature LPG sensing properties of Polyaniline–Copper ferrite composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study demonstrates the sensing response of a polyaniline–copper ferrite (PANI-CuFe2O4) nanostructured composite for liquefied petroleum gas (LPG) sensing. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques were used to characterize the PANI and the nanocomposite prepared by chemical polymerization method. At room temperature, a simple LPG sensor with a maximum sensing response of 86% at 764 ppm LPG was fabricated using only spin coated PANI-CuFe2O4 nanocomposite. It is observed that as the gas concentration in parts per million (ppm) increased, the composite's resistance also decreased. Their quick reaction and recovery durations, as well as their sensing performance stability, which are demonstrated their potential candidature for gas sensing applications. To describe how the sensing mechanism works, the p-n hetero-junction barrier produced at the interface of PANI and CuFe2O4 is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at the time of publication, which may be obtained from the authors upon reasonable request.

References

  1. A.G. MacDiarmid, Semiconducting and metallic polymers: The fourth generation of polymeric materials. Synth. Met. 125, 11–22 (2002)

    Article  CAS  Google Scholar 

  2. S. Srivastava, S.S. Sharma, S. Kumar, S. Agarwal, M. Singh, Y.K. Vijay, Characterization of gas sensing behavior of multi walled carbon nanotube polyaniline composite films. Int. J. Hydrogen Energy. 34, 8444–8450 (2009)

    Article  CAS  Google Scholar 

  3. B.B. Ravikiran, U. Deepak, M. Sandip, J.C. Vyas, R. Sharma, Study of room temperature LPG sensing behavior of polyaniline thin film synthesized by cost effective oxidative polymerization technique. J. Mater Sci: Mater. Electron. 26, 5065–5070 (2015)

    Google Scholar 

  4. S. Kotresh, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Interfacial p–n heterojunction of polyaniline–nickel ferrite nanocomposite as room temperature liquefied petroleum gas sensor. Compos Interfaces 24, 549–561 (2017)

    Article  CAS  Google Scholar 

  5. B. Mu, W. Zhang, A. Wang, Template synthesis of graphene/polyaniline hybrid hollow microspheres as electrode materials for high-performance supercapacitor. J Nanopart Res. 16, 2432–2443 (2014)

    Article  Google Scholar 

  6. Y. Jafari, S.M. Ghoreishi, M. Shabani-Nooshabadi, Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res. 23, 91–103 (2016)

    Article  Google Scholar 

  7. R.H. Lee, C.H. Chi, Y.C. Hsu, Platinum nanoparticle/self-doping polyaniline composite based counter electrodes for dye-sensitized solar cells. J Nanopart Res. 15, 1733–1747 (2013)

    Article  Google Scholar 

  8. S. Shin, J. Kim, Y.H. Kim, S.I. Kim, Enhanced performance of organic light-emitting diodes by using hybrid anodes composed of graphene and conducting polymer. Curr Appl Phys 13, S144–S147 (2013)

    Article  Google Scholar 

  9. S.V. Patil, R.N. Bulakhe, P.R. Deshmukh, N.M. Shinde, C.D. Lokhande, LPG sensing by p-polyaniline/n-PbS heterojunction capacitance structure. Sens. Actuators, A 201, 387–394 (2013)

    Article  CAS  Google Scholar 

  10. S.S. Joshi, T.P. Gujar, V.R. Shinde, C.D. Lokhande, Fabrication of n-CdTe/p-polyaniline heterojunction-based room temperature LPG sensor. Sens. Actuators, B 132, 349–355 (2008)

    Article  CAS  Google Scholar 

  11. S.J. Patil, A.C. Lokhande, A.A. Yadav, C.D. Lokhande, Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J. Mater. Sci.: Mater. Electron. 27, 7505–7508 (2016)

    CAS  Google Scholar 

  12. D.S. Dhawale, R.R. Salunkhe, U.M. Patil, K.V. Gurav, A.M. More, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor based on P-polyaniline/n-TiO2 heterojunction. Sens. Actuators, B. 134, 988–992 (2008)

    Article  CAS  Google Scholar 

  13. Y.T. Ravikiran, S. Kotresh, S.C. Vijayakumari, S. Thomas, Liquid petroleum gas sensing performance of polyaniline-carboxymethyl cellulose composite at room temperature. Curr. Appl. Phys. 14, 960–964 (2014)

    Article  Google Scholar 

  14. S. Singh, A. Singh, B.C. Yadav, P. Tandon, Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)

    Article  CAS  Google Scholar 

  15. E. Ranjith Kumar, R. Jayaprakash, G. Sarala Devi, P. Siva Prasada Reddy, Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. J. Magn. Magn. Mater. 355, 87–92 (2014)

    Article  Google Scholar 

  16. S. Sulthana, M.Z. Rafiuddin, K.U. Khan, Synthesis and characterization of copper ferrite nanoparticles doped Polyaniline. J Alloys Compd. 535, 44–49 (2012)

    Article  Google Scholar 

  17. Z.X. Sun, F.W. Su, W. Forsling, P.O. Samskog, Surface Characteristics of magnetite in aqueous suspension. J. Colloid. Interface Sci. 197, 151–159 (1998)

    Article  CAS  Google Scholar 

  18. J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite: Preparation, characterization and properties. Mater Sci Eng A 456, 300–304 (2007)

    Article  Google Scholar 

  19. V.A. Zhuravlev, R.V. Minin, V.I. Itin, I.Y. Lilenko, Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. J Alloys Compd. 692, 705–712 (2017)

    Article  CAS  Google Scholar 

  20. E.R. Kumar, R. Jayaprakash, S. Devi, S.P. Reddy, Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. J. Magn. Magn. Mater. 355, 87–92 (2014)

    Article  CAS  Google Scholar 

  21. S. Kotresh, Y.T. Ravikiran, S.K. Tiwari, S.C. Vijaya Kumari, Polyaniline–cadmium ferrite nanostructured composite for room-temperature liquefied petroleum gas sensing. J. Electron. Mater. 46, 5240–5247 (2017)

    Article  CAS  Google Scholar 

  22. S. Quillard, G. Louarn, S. Lefrant, A.G. MacDiarmid, Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B: Condens. Matter 50, 12496–12508 (1994)

    Article  CAS  Google Scholar 

  23. D. Geethalakshmi, N. Muthukumarasamy, R. Balasundaraprabhu, Effect of dopant concentration on the properties of HCl–doped PANI thin films prepared at different temperatures. Optik 125, 1307–1310 (2014)

    Article  CAS  Google Scholar 

  24. P.C. Wang, Y. Dan, L.H. Liu, Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped Polyaniline nanofibers. Mater. Chem. Phys. 144, 155–161 (2014)

    Article  CAS  Google Scholar 

  25. X. Li, G. Wang, X. Li, Surface modification of nano–SiO2 particles using Polyaniline. Surf Coat. Technol. 197, 56–60 (2005)

    Article  CAS  Google Scholar 

  26. R.D. Waldron, Infrared spectra of ferrites. Phys Rev 99, 1727–1735 (1955)

    Article  CAS  Google Scholar 

  27. X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem. Eng. J. 301, 1–11 (2016)

    Article  Google Scholar 

  28. M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth Met 189, 34–41 (2014)

    Article  CAS  Google Scholar 

  29. R.M. Khafagy, Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure. J Alloys Compd. 509, 9849–9857 (2011)

    Article  CAS  Google Scholar 

  30. S. Briceno, H.D. Castillo, V. Sagredo, W. Bramer-Escamilla, P. Silva, Structural, catalytic and magnetic properties of Cu1-xCoxFe2O4. Appl. Sur. Sci. 263, 100–103 (2012)

    Article  CAS  Google Scholar 

  31. S. Min, F. Wang, Y. Han, An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. J Mater Sci. 42, 9966–9972 (2007)

    Article  CAS  Google Scholar 

  32. A.T. Mane, S.T. Navale, S. Sen, D.K. Aswal, S.K. Gupta, V.B. Patil, Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org. Electron. 16, 195–204 (2015)

    Article  CAS  Google Scholar 

  33. A.L. Patterson, The scherrer formula for X-Ray particle size determination. Phys. Rev. B 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  34. M. Faisal, S. Khasim, Ku–band EMI shielding effectiveness and dielectric properties of polyaniline–Y2O3 composites. Polym. Sci. Ser. A 56, 366–372 (2014)

    Article  CAS  Google Scholar 

  35. H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: Influence of the synthesis conditions. Infrared Phys. Technol. 85, 261–265 (2017)

    Article  CAS  Google Scholar 

  36. R.K. Sonker, B.C. Yadav, Development of Fe2O3-PANI nanocomposite thin film based sensor for NO2 detection. J. Taiwan Inst. Chem Eng. 77, 276–281 (2017)

    Article  CAS  Google Scholar 

  37. B. Senthilkumar, K. Vijaya Sankar, C. Sanjeeviraja, R. Kalai Selvan, Synthesis and physico-chemical property evaluation of PANI-NiFe2O4 nanocomposite as electrodes for supercapacitors. J. Alloys Compd. 553, 350–357 (2013)

    Article  CAS  Google Scholar 

  38. T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/–Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B 190, 120–126 (2014)

    Article  CAS  Google Scholar 

  39. R.V. Barde, Preparation, characterization and CO2 gas sensitivity of polyaniline doped with sodium superoxide (NaO2). Mater. Res. Bull. 73, 70–76 (2016)

    Article  CAS  Google Scholar 

  40. S.T. Navale, G.D. Khuspe, M.A. Chougale, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)

    Article  CAS  Google Scholar 

  41. X. Yang, L. Li, F. Yan, Polypyrrole/silver composite nanotubes for gas sensors. Sens. Actuators B 145, 485–500 (2010)

    Article  Google Scholar 

  42. S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, T. Chandrasekhar, C.H.V.V. Ramana, S. Thomas, Solution-based spin cast processed polypyrrole/niobium pentoxide nanocomposite as room temperature liquefied petroleum gas sensor. Mater Manuf Processes 31, 1976–1982 (2016)

    Article  CAS  Google Scholar 

  43. S.S. Barkade, D.V. Pinjari, U.T. Nakate, A.K. Singh, P.R. Gogate, J.B. Naik, S.H. Sonawane, A.B. Pandit, Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chem. Eng. Process. 74, 115–123 (2013)

    Article  CAS  Google Scholar 

  44. A. Parveen, A. koppalkar, A.S. Roy, Liquefied Petroleum Gas Sensing of Polyaniline-Titanium Dioxide Nanocomposites. Sens. Lett. 11, 242–248 (2013)

    Article  CAS  Google Scholar 

  45. M. Khairy, Polyaniline-Zn0.2Mn0.8Fe2O4 ferrite core-shell composite: Preparation, characterization and properties. J. Alloys Comp. 608, 283–291 (2014)

    Article  CAS  Google Scholar 

  46. M. Singh, B.C. Yadav, U. Kumar, R. Ashok Ranjan, M.K. Srivastava, Fabrication of nanostructured lead-free bismuth sodium titanate thin film and its liquefied petroleum gas sensing. Sens. Actuators, A 301, 111765 (2020)

    Article  CAS  Google Scholar 

  47. A.A. Omar, S. Khasim, A. Roy, A. Pasha, Highly conductive Polyaniline/graphene nano-platelet composite sensor towards detection of toluene and bezene gases. Appl. Phys. A 125, 1–12 (2019)

    CAS  Google Scholar 

  48. M. Moradian, S. Nasirian, Structural and room temperature gas sensing properties of polyaniline/titania nanocomposite. Org. Electron. 62, 290–297 (2018)

    Article  CAS  Google Scholar 

  49. S. Kotresh, Y.T. Ravikiran, S.C. Vijayakumari, Ch.V.V. Ramana, K.M. Batoo, Solution based-spin cast processed LPG sensor at room temperature. Sens. Actuators, A, 263, 687–692 (2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK and AR are responsible for the designing of the work, prepared the materials and completed the initial drafting of the manuscript. AP and AM are contributed in the characterizations and analysis of the composite data. NB is contributed in the final drafting, editing and analyzing the spectra.

Corresponding author

Correspondence to Aashis Roy.

Ethics declarations

Conflict of interest

This is to inform you that author and co-authors do not have any financial or non-financial and even direct or indirect conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotresh, S., Roy, A., Parveen, A. et al. Fabrication of low-cost p-n heterostructure room temperature LPG sensing properties of Polyaniline–Copper ferrite composite. J Mater Sci: Mater Electron 34, 218 (2023). https://doi.org/10.1007/s10854-022-09662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09662-z

Navigation