Skip to main content
Log in

Ecofriendly low voltage high-performance ionic artificial muscles based on bacterial cellulose nanofibers reinforced with polyvinyl alcohol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance electroactive ionic artificial muscles have received widespread attention in braille displays, haptic devices, active biomedical devices, and soft robots. Herein, we report a novel low voltage ecofriendly ionic polymer actuator based on bacterial cellulose (BC), polyvinyl alcohol (PVA), and ionic liquid (IL). The designed BC-IL-PVA actuator exhibited superior actuation performances, such as low driving voltage (< 1.5 V), long bending durability (97% retention for 4 h), and large bending strain (0.29% at sinusoidal waveform of 1.0 V with 0.1 Hz), and wide driving frequency (up to 5 Hz), which were ascribed to the strong crosslinking and ionic interactions of BC nanofibers with PVA and IL. Furthermore, a bionic finger based on the designed actuator was successfully demonstrated for playing music and sliding electronic photos on smart photo screens. Therefore, the proposed BC-IL-PVA ionic actuator will offer a feasible approach for developing high-performance soft actuators, artificial muscles, active medical devices, and soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Acerce, E.K. Akdoğan, M. Chhowalla, Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549, 370–373 (2017)

    Article  CAS  Google Scholar 

  2. K. Xiang, T. Chen, Y. Wang, The highly stable air-working electro-active ionic polymer actuator based on nitrogen-doped graphene aerogel flexible electrode. J. Mater. Sci.: Mater. Electron. 32, 21395–21405 (2021)

    CAS  Google Scholar 

  3. F. Wang, D. Huang, Q. Li, Y. Wu, B. Yan, Z. Wu, Highly electro-responsive ionic soft actuator based on graphene nanoplatelets-mediated functional carboxylated cellulose nanofibers. Compos. Sci. Technol. 231, 109485 (2023)

    Article  Google Scholar 

  4. S. Huang, Y. Liu, Y. Zhao, Z. Ren, C.F. Guo, Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2019)

    Article  Google Scholar 

  5. F. Yu, J. Ciou, S. Chen, W. Poh, J. Chen, J.T. Chen, K. Haruethai, J. Lv, D. Gao, P. Lee, Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nat. Commun. 13, 1–8 (2022)

    Google Scholar 

  6. M. Sadeghi, Y. Hojjat, M. Khodaei, Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm. J. Mater. Sci.: Mater. Electron. 30, 16527–16538 (2019)

    CAS  Google Scholar 

  7. C. Jo, D. Pugal, I.K. Oh, K.J. Kim, K. Asaka, Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38, 1037–1066 (2013)

    Article  CAS  Google Scholar 

  8. F. Wang, Y. Kong, F. Shen, Y. Wang, D. Wang, Q. Li, High-performance microfibrillated cellulose-based low voltage electroactive ionic artificial muscles in bioinspired applications. Composites B 228, 109436 (2022)

    Article  CAS  Google Scholar 

  9. U. Raza, S. Oh, R. Tabassian, M. Mahato, I.K. Oh, Micro-structured porous electrolytes for highly responsive ionic soft actuators. Sens. Actuator B 352, 131006 (2022)

    Article  CAS  Google Scholar 

  10. M.A. Mohd Asri, N.A. Ramli, A.N. Nordin, Electrical performance and reliability assessment of silver inkjet printed circuits on flexible substrates. J. Mater. Sci.: Mater. Electron. 32, 16024–16037 (2021)

    CAS  Google Scholar 

  11. S. Mishra, R. Sahoo, L. Unnikrishnan, A. Ramadoss, S. Mohanty, S.K. Nayak, Enhanced structural and dielectric behaviour of PVDF-PLA binary polymeric blend system. Mater. Today Commun. 26, 101958 (2021)

    Article  CAS  Google Scholar 

  12. F. Wang, Q. Li, J.O. Park, S. Zheng, E. Choi, Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole‐coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 31, 2007749 (2021)

    Article  CAS  Google Scholar 

  13. S. Mehraeen, S. Sadeghi, F. Cebeci, M. Papila, S.A. Gürsel, Polyvinylidene fluoride grafted poly (styrene sulfonic acid) as ionic polymer-metal composite actuator. Sens. Actuators A 279, 157–167 (2018)

    Article  CAS  Google Scholar 

  14. S.Y. Jung, S.Y. Ko, J.O. Park, S. Park, Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method. Smart Mater. Struct. 24, 037007 (2015)

    Article  Google Scholar 

  15. D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619 (2021)

    Article  CAS  Google Scholar 

  16. O.M. Vanderfleet, E.D. Cranston, Production routes to tailor the performance of cellulose nanocrystals. Nat. Rev. Mater. 6, 124–144 (2021)

    Article  CAS  Google Scholar 

  17. K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, R. Zhang et al., Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740 (2021)

    Article  CAS  Google Scholar 

  18. F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019)

    Article  CAS  Google Scholar 

  19. F. Wahid, L.-H. Huang, X.-Q. Zhao, W.-C. Li, Y.-Y. Wang, S.-R. Jia et al., Bacterial cellulose and its potential for biomedical applications. Biotechnol. Adv. 53, 107856 (2021)

    Article  CAS  Google Scholar 

  20. J. Caro-Astorga, K.T. Walker, N. Herrera, K.-Y. Lee, T. Ellis, Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12, 1–9 (2021)

    Article  Google Scholar 

  21. A. Fatima, S. Yasir, M. Ul-Islam, T. Kamal, M. Ahmad, Y. Abbas et al., Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv. Compos. Hybrid Mater. 5, 307–321 (2022)

    Article  CAS  Google Scholar 

  22. Y. Huang, C. Zhu, J. Yang, Y. Nie, C. Chen, D. Sun, Recent advances in bacterial cellulose. Cellulose 21, 1–30 (2014)

    Article  Google Scholar 

  23. X. Wu, H. Mou, H. Fan, J. Yin, Y. Liu, J. Liu, Improving the flexibility and durability of aged paper with bacterial cellulose. Mater. Today Commun. 32, 103827 (2022)

    Article  CAS  Google Scholar 

  24. S.-P. Lin, I. Loira Calvar, J.M. Catchmark, J.-R. Liu, A. Demirci, Cheng, biosynthesis, production and applications of bacterial cellulose. Cellulose 20, 2191–2219 (2013)

    Article  CAS  Google Scholar 

  25. J. Jayachandiran, S. Vajravijayan, N. Nandhagopal, K. Gunasekaran, D. Nedumaran, Fabrication and characterization of ZnO incorporated cellulose microfiber film: structural, morphological and functional investigations. J. Mater. Sci.: Mater. Electron. 30, 6037–6049 (2019)

    CAS  Google Scholar 

  26. Y. Wang, F. Wang, Y. Kong, L. Wang, Q. Li, Novel ionic bioartificial muscles based on ionically crosslinked multi-walled carbon nanotubes-mediated bacterial cellulose membranes and PEDOT: PSS electrodes. Smart Mater. Struct. 31, 025023 (2022)

    Article  CAS  Google Scholar 

  27. J.-H. Jeon, I.-K. Oh, C.-D. Kee, S.-J. Kim, Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sens. Actuator B 146, 307–313 (2010)

    Article  CAS  Google Scholar 

  28. S.-S. Kim, J.-H. Jeon, C.-D. Kee, I.-K. Oh, Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT: PSS. Smart Mater. Struct. 22, 085026 (2013)

    Article  CAS  Google Scholar 

  29. F. Wang, J.-H. Jeon, S. Park, C.-D. Kee, S.-J. Kim, I.-K. Oh, A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter. 12, 246–254 (2016)

    Article  Google Scholar 

  30. X. Luo, L. Zhu, Y. Wang, J. Li, J. Nie, Z.L. Wang, A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021)

    Article  CAS  Google Scholar 

  31. S. Suganthi, S. Mohanapriya, V. Raj, S. Kanaga, R. Dhandapani, S. Vignesh et al., Tunable physicochemical and bactericidal activity of multicarboxylic-acids‐crosslinked polyvinyl alcohol membrane for food packaging applications. ChemistrySelect 3, 11167–11176 (2018)

    Article  CAS  Google Scholar 

  32. Q. Zhong, G. Shi, Q. Sun, J. Li, Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux. J. Membr. Sci. 640, 119836 (2021)

    Article  CAS  Google Scholar 

  33. E. Uslu, M. Gavgali, M.O. Erdal, S. Yazman, L. Gemi, Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: a comparative study. Mater. Today Commun. 26, 101939 (2021)

    Article  CAS  Google Scholar 

  34. C. Ding, Z. Qiao, A review of the application of polyvinyl alcohol membranes for fuel cells. Ionics 28, 1–13 (2022)

    Article  CAS  Google Scholar 

  35. N. Algethami, Structural, optical, electrical, and DFT studies of chitosan/polyvinyl alcohol composite doped with mixed nanoparticles (GO/TiO2) for flexible energy-storage devices. J. Mater. Sci.: Mater. Electron. 33, 25518–25531 (2022)

    CAS  Google Scholar 

  36. S. Chai, G. Zan, K. Dong, T. Wu, Q. Wu, Approaching superfoldable thickness-limit carbon nanofiber membranes transformed from water-soluble PVA. Nano Lett. 21, 8831–8838 (2021)

    Article  CAS  Google Scholar 

  37. F. Bachtiger, T.R. Congdon, C. Stubbs, M.I. Gibson, G.C. Sosso, The atomistic details of the ice recrystallisation inhibition activity of PVA. Nat. Commun. 12, 1–14 (2021)

    Article  Google Scholar 

  38. K. Qiu, A.N. Netravali, Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. J. Mater. Sci. 47, 6066–6075 (2012)

    Article  CAS  Google Scholar 

  39. N. Terasawa, K. Asaka, Electrochemical and electromechanical properties of activated multi-walled carbon nanotube polymer actuator that surpass the performance of a single-walled carbon nanotube polymer actuator. Mater. Today 3, S178–S183 (2016)

    Google Scholar 

  40. F. Wang, Z. Jin, S. Zheng, H. Li, S. Cho, H.J. Kim, S. Kim, E. Choi, J. Park, S. Park, High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens. Actuator B 250, 402–411 (2017)

    Article  CAS  Google Scholar 

  41. L. Yang, Z. Sun, F. Li, S. Du, W. Song, Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT. Appl. Phys. A 125, 1–15 (2019)

    Google Scholar 

  42. Z. Sun, L. Yang, D. Zhang, W. Song, High performance, flexible and renewable nano-biocomposite artificial muscle based on mesoporous cellulose/ionic liquid electrolyte membrane. Sens. Actuator B 283, 579–589 (2019)

    Article  CAS  Google Scholar 

  43. M. Nan, D. Bang, S. Zheng, G. Go, B.A. Darmawan, S. Kim, H. Li, C. Kim, A. Hong, F. Wang, J. Park, E. Choi, High-performance biocompatible nanobiocomposite artificial muscles based on ammonia-functionalized graphene nanoplatelets–cellulose acetate combined with PVDF. Sens. Actuator B 323, 128709 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51905487) and Zhejiang Provincial Natural Science Foundation of China (LY21E050023, LTY21F030001).

Author information

Authors and Affiliations

Authors

Contributions

FW: designing experiments, writing-original draft. DH: data curation. YW: analyzing data. DW: writing-review & editing.

Corresponding authors

Correspondence to Fan Wang or Donghai Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 37 kb)

Electronic supplementary material 2 (MP4 900 kb)

Electronic supplementary material 3 (MP4 2414 kb)

Electronic supplementary material 4 (MP4 2926 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Huang, D., Wu, Y. et al. Ecofriendly low voltage high-performance ionic artificial muscles based on bacterial cellulose nanofibers reinforced with polyvinyl alcohol. J Mater Sci: Mater Electron 34, 123 (2023). https://doi.org/10.1007/s10854-022-09648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09648-x

Navigation