Skip to main content

Advertisement

Log in

Promising novel transparent conductive F-doped ZnSnO3 thin films for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, ZnSnO3 and F-doped ZnSnO3 thin films were successfully deposited via the spray pyrolysis approach at a substrate temperature of 350 °C. The structural properties of the ZnSnO3 and F-doped ZnSnO3 thin films showed that the as-prepared films are polycrystalline with a rhombohedral structure. In the same line, it is observed that the surface examination shows that the ZnSnO3 and F-doped ZnSnO3 thin films have a uniform and homogenous surface. The EDX results verified that the ZnSnO3 and F-doped ZnSnO3 samples were formed with a respect ratio that was nearly identical to that of the ingots. The optical analysis of the ZnSnO3 and F-doped ZnSnO3 thin films demonstrated that, as the fluorine content was raised, the direct optical band gap of the ZnSnO3 and F-doped ZnSnO3 thin films was observed to drop, whereas the Urbach energy and absorption coefficient exhibited the opposite behavior. Furthermore, the ZnSnO3 and F-doped ZnSnO3 films have revealed a wide energy gap that drops from 3.42 to 2.97 eV via raising the F content. Moreover, the ZnSnO3 and F-doped ZnSnO3 samples have presented high values of nonlinear optical parameters, which were improved by raising the F content. Also, the ZnSnO3 and F-doped ZnSnO3 films exhibited high optical, electrical, and thermal conductivities as compared with ITO films. Furthermore, the increase in the fluorine doping concentration produces an improvement in the figure merit of these films, while the sheet resistance decreases. The obtained results refer to the formation of a new transparent conductive layer suitable for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data and information recorded or analyzed throughout this study are included in this paper.

References

  1. T. Ohsawa, J. Vac. Sci. Technol. A. 40, 10806 (2022)

    Article  CAS  Google Scholar 

  2. M. Kim, B.-H. Kwon, C.W. Joo, M.S. Cho, H. Jang, H. Cho, D.Y. Jeon, E.N. Cho, Y.S. Jung, Nat. Commun. 13, 1 (2022)

    Google Scholar 

  3. T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, H. Kong, G. Yang, G. Wei, Nanomaterials 12, 982 (2022)

    Article  Google Scholar 

  4. M.M. Afandi, G. Baek, T. Kang, J. Ryu, J. Park, J. Kim, Thin Solid Films (2022). https://doi.org/10.1016/j.tsf.2022.139316

    Article  Google Scholar 

  5. K.A. Adegoke, N.W. Maxakato, Coord. Chem. Rev. 457, 214389 (2022)

    Article  CAS  Google Scholar 

  6. V. Soni, A. Khosla, P. Singh, V.-H. Nguyen, Q. Van Le, R. Selvasembian, C.M. Hussain, S. Thakur, P. Raizada, J. Environ. Manage. 308, 114617 (2022)

    Article  CAS  Google Scholar 

  7. S. Hurand, A. Corvisier, B. Lacroix, A.J. Santos, F. Maudet, C. Dupeyrat, R.G. Roja, F.M. Morales, T. Girardeau, F. Paumier, Appl. Surf. Sci. 595, 152945 (2022)

    Article  CAS  Google Scholar 

  8. M. Girtan, B. Negulescu, Opt. Mater. X 13, 100122 (2022)

    CAS  Google Scholar 

  9. M.I. Hossain, A. Khandakar, M.E.H. Chowdhury, S. Ahmed, M.M. Nauman, B. Aïssa, J. Electron. Mater. 51, 179 (2022)

    Article  CAS  Google Scholar 

  10. M.I. Hossain, Y. Zakaria, A. Zikri, A. Samara, B. Aissa, F. El-Mellouhi, N.S. Hasan, A. Belaidi, A. Mahmood, S. Mansour, Mater. Technol. 37, 248 (2022)

    Article  CAS  Google Scholar 

  11. S. Yu, L. Song, C. Wu, L. Li, Ceram. Int. 48, 15925 (2022)

    Article  CAS  Google Scholar 

  12. J. Seo, H. Yoo, Membranes (Basel). 12, 485 (2022)

    Article  CAS  Google Scholar 

  13. Y.G. Lee, W.S. Choi, Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202200128

    Article  Google Scholar 

  14. H. Yang, W. Yang, J. Su, X. Zhang, Mater. Sci. Semicond. Process. 137, 106228 (2022)

    Article  CAS  Google Scholar 

  15. R. Kumaravel, K. Ramamurthi, I. Sulania, K. Asokan, D. Kanjilal, D.K. Avasti, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 285, 61 (2012)

    Article  CAS  Google Scholar 

  16. A. Alizadeh, Y. Rajabi, M.M. Bagheri-Mohagheghi, Opt. Mater. (Amst). 131, 112589 (2022)

    Article  CAS  Google Scholar 

  17. S. Das, S. Mojumder, D. Saha, M. Pal, Sens. Actuators B Chem. 352, 131066 (2022)

    Article  CAS  Google Scholar 

  18. E. Benrezgua, B. Deghfel, Z. Abdelhalim, W.J. Basirun, R. Amari, A. Boukhari, M.K. Yaakob, S. Kheawhom, A.A. Mohamad, J. Mol. Struct. 1267, 133639 (2022)

    Article  CAS  Google Scholar 

  19. Y. Wang, C. Yang, Y. Zhang, L. Guo, Y. Wang, G. Gao, F. Fu, B. Xu, D. Wang, Int. J. Hydrogen Energy 47, 9566 (2022)

    Article  CAS  Google Scholar 

  20. L.A. Patil, I.G. Pathan, D.N. Suryawanshi, A.R. Bari, D.S. Rane, Procedia Mater. Sci. 6, 1557 (2014)

    Article  CAS  Google Scholar 

  21. H. Zhu, J. Liu, R. Chen, B. Feng, C. Luan, J. Ma, H. Xiao, Vacuum 197, 110811 (2022)

    Article  CAS  Google Scholar 

  22. T.G. Kim, D.S. Shin, J. Park, J. Nanosci. Nanotechnol. 16, 10272 (2016)

    Article  CAS  Google Scholar 

  23. I. Riahi, B. Khalfallah, F. Chaabouni, Opt. Quantum Electron. 54, 1 (2022)

    Article  Google Scholar 

  24. J. Xu, X. Jia, X. Lou, J. Shen, Solid. State. Electron. 50, 504 (2006)

    Article  CAS  Google Scholar 

  25. S. Dai, T. Wang, R. Li, Q. Wang, Y. Ma, L. Tian, J. Su, Y. Wang, D. Zhou, X. Zhang, J. Alloys Compd. 745, 256 (2018)

    Article  CAS  Google Scholar 

  26. C.B. Anucha, Li. Altin, E. Bacaksiz, V.N. Stathopoulos, I. Polat, A. Yasar, Ö.F. Yüksel, Water 13, 1290 (2021)

    Article  CAS  Google Scholar 

  27. X. Yang, S. Jiang, J. Li, J.-H. Zhang, X.-F. Li, RSC Adv. 8, 20990 (2018)

    Article  CAS  Google Scholar 

  28. W. Zeng, T. Liu, L. Lin, Mater. Sci. Semicond. Process. 15, 319 (2012)

    Article  CAS  Google Scholar 

  29. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Optik (Stuttg). 227, 165837 (2021)

    Article  CAS  Google Scholar 

  30. A.A. Akl, I.M. Elradaf, A.S. Hassanien, Superlattices Microstruct. 143, 106544 (2020)

    Article  CAS  Google Scholar 

  31. A.A. Akl, A.S. Hassanien, Phys. B Condens. Matter 620, 413267 (2021)

    Article  CAS  Google Scholar 

  32. I.M. ER, A. Saeed, Hassanien, Phys. B Condens. Matter 585, 412110 (2020)

    Article  Google Scholar 

  33. N. Houaidji, M. Ajili, B. Chouial, N.T. Kamoun, Optik (Stuttg). 208, 164026 (2020)

    Article  CAS  Google Scholar 

  34. I.M. El Radaf, J. Mater. Sci. Mater. Electron. 31, 3228 (2020)

    Article  Google Scholar 

  35. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  36. A.S. Hassanien, I. Sharma, Optik (Stuttg). 200, 163415 (2020)

    Article  CAS  Google Scholar 

  37. I.M. El Radaf, H.Y.S. Al-Zahrani, A.S. Hassanien, J. Mater. Sci. Mater. Electron. 31, 8336 (2020)

    Article  Google Scholar 

  38. I.M. El Radaf, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Article  Google Scholar 

  39. I.M. El Radaf, H.Y.S. Al-Zahrani, Phys. B Condens. Matter 631, 413655 (2022)

    Article  Google Scholar 

  40. A. Qasem, N.M. Said, A.A. Hassan, H.A. Yakout, E.R. Shaaban, Phys. B Condens. Matter 627, 413600 (2022)

    Article  CAS  Google Scholar 

  41. T. Saha, J. Podder, M.R. Islam, H.N. Das, Opt. Mater. (Amst). 133, 113065 (2022)

    Article  CAS  Google Scholar 

  42. A. Qasem, M.Y. Hassaan, M.G. Moustafa, M.A.S. Hammam, H.Y. Zahran, I.S. Yahia, E.R. Shaaban, Opt. Mater. (Amst). 109, 110257 (2020)

    Article  CAS  Google Scholar 

  43. A.S. Hassanien, I. Sharma, A.A. Akl, J. Non. Cryst. Solids 531, 119853 (2020)

    Article  CAS  Google Scholar 

  44. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    Article  CAS  Google Scholar 

  45. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  46. K.A. Aly, Appl. Phys. A 99, 913 (2010)

    Article  CAS  Google Scholar 

  47. A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)

    Article  CAS  Google Scholar 

  48. P. Sharma, S.C. Katyal, Mater. Chem. Phys. 112, 892 (2008)

    Article  CAS  Google Scholar 

  49. I. Sharma, P. Sharma, A.S. Hassanien, J. Non. Cryst. Solids 590, 121673 (2022)

    Article  CAS  Google Scholar 

  50. A. Qasem, B. Alshahrani, H.A. Yakout, H.-A.S. Abbas, E.R. Shaaban, Mater. Chem. Phys. 277, 125620 (2022)

    Article  CAS  Google Scholar 

  51. A.S. Alshammari, Z.R. Khan, M. Gandouzi, M. Mohamed, M. Bouzidi, M. Shkir, H.M. Alshammari, Opt. Mater. (Amst). 126, 112146 (2022)

    Article  CAS  Google Scholar 

  52. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Opt. Quantum Electron. 52, 1 (2020)

    Article  Google Scholar 

  53. N.R. Aswathy, J. Varghese, S.R. Nair, R.V. Kumar, Mater. Chem. Phys. 282, 125916 (2022)

    Article  CAS  Google Scholar 

  54. A.R. Wassel, I.M. El Radaf, Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

  55. T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, Y. Shigesato, J. Appl. Phys. 105, 73709 (2009)

    Article  Google Scholar 

  56. H. Zaka, S.S. Fouad, B. Parditka, A.E. Bekheet, H.E. Atyia, M. Medhat, Z. Erdélyi, Sol. Energy 205, 79 (2020)

    Article  CAS  Google Scholar 

  57. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, G.A.M. Ali, Optik (Stuttg). 186, 275 (2019)

    Article  CAS  Google Scholar 

  58. M. Alzaid, A. Qasem, E.R. Shaaban, N.M.A. Hadia, Opt. Mater. (Amst). 110, 110539 (2020)

    Article  CAS  Google Scholar 

  59. I.M. EL Radaf, Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020)

    Article  Google Scholar 

  60. N. Suwannakham, A. Tubtimtae, E. Wongrat, Phys. B Condens. Matter. (2022). https://doi.org/10.1016/j.physb.2022.41444

    Article  Google Scholar 

  61. I.M. El Radaf, R.M. Abdelhameed, J. Alloys Compd. 765, 1174 (2018)

    Article  Google Scholar 

  62. C. Khelifi, A. Attaf, A. Yahia, M. Dahnoun, Surfaces and Interfaces 15, 244 (2019)

    Article  CAS  Google Scholar 

  63. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 666, 392 (2016)

    Article  CAS  Google Scholar 

  64. C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk, T. Manoubi, Ceram. Int. 42, 5963 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project number (QU-IF-05-01- 28524). The authors also thank to Qassim University for technical support.

Funding

This study was supported by the Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project number (QU-IF-05-01- 28524).

Author information

Authors and Affiliations

Authors

Contributions

The study design, preparation of materials, data collection, and analysis were contributed by all authors. Each author provided feedback on prior drafts of the article. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to I. M. El Radaf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Radaf, I.M. Promising novel transparent conductive F-doped ZnSnO3 thin films for optoelectronic applications. J Mater Sci: Mater Electron 34, 215 (2023). https://doi.org/10.1007/s10854-022-09600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09600-z

Navigation