Skip to main content
Log in

Electrical performance characterization of glass substrate for millimeter-wave applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports the electrical transmission performance characterization of glass substrate for millimeter-wave (mm-W) application. Glass is a competitive material for mm-W applications for the property of excellent electrical performance, high integration density and low-cost. Here we design and fabricate glass-based test vehicles on 6-inch AF32 glass wafer, and then we measured test vehicles and characterized transmission performance of glass substrate. Firstly, the complex permittivity of AF32 substrate is characterized by MRR method. Next, the three most representative transmission for mm-W application, microstrip (MS), coplanar waveguide (CPW) and substrate in waveguide (SIW) line, are investigated by L-2L method. Besides, the transmission performance of through glass via (TGV) is studied by comparison of transmission line with and without TGV transition. At frequency of 80 GHz, the measured insertion loss of MS, CPW and SIW is 0.25, 0.22 and 0.12 dB/mm, and the measured insertion loss of TGV is 0.558 dB/via. The results of glass-based transmission lines and performance comparison with other mm-W substrate technologies indicate that glass substrate is promising for mm-W applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. H. Yu, L. J. Yen, C. Y. Hsieh, J. S. Hsieh, Victor C. Y. Chang, C. H. Hsieh, C. S. Liu, C. T. Wang, KC Yee, Doug C. H. Yu, High Performance, High Density RDL for Advanced Packaging, in 2018 IEEE 68th Electronic Components and Technology Conference, (2018), pp. 587–593

  2. B. Cao, H. Wang, Y. Huang, J. Zheng, High-gain L-probe excited substrate integrated cavity antenna array with LTCC-based gap waveguide feeding network for W-band application. IEEE Trans. Antennas Propag. 63(12), 5465–5474 (2015)

    Article  Google Scholar 

  3. Y. Li, C. Wang, Y.X. Guo, A Ka band wideband dual-polarized magnetoelectric dipole antenna array on LTCC. IEEE Trans. Antennas Propag. 68(6), 4985–4990 (2020)

    Article  Google Scholar 

  4. X. Gu, D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, P. Parida, Y. Kwark, A. Valdes-Garcia, Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications. IEEE Trans. Microwave Theory Tech. 67(7), 2975–2984 (2019)

    Article  Google Scholar 

  5. M. Wojnowski, R. Lachner, J. Böck, C. Wagner, F. Starzer, G. Sommer, K. Pressel, R. Weigel, Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications, in 2011 IEEE 13th Electron. Packag. Technol. Conf. (2011), pp. 423-429

  6. C. Beck, H.J. Ng, R. Agethen, M. PourMousavi, H.P. Forstner, M. Wojnowski, K. Pressel, R. Weigel, A. Hagelauer, D. Kissinger, Industrial mmWave radar sensor in embedded wafer-level BGA packaging technology. IEEE Sens. J. 16(17), 6566–6578 (2016)

    CAS  Google Scholar 

  7. T. Zhang, Q. Lu, Z. Zhu, J. Hu, H. Xia, L. Li, T.J. Cui, Millimeter-wave antenna-in-package applications based on D263T glass substrate. IEEE Access 8, 67921–67928 (2020)

    Article  Google Scholar 

  8. A.O. Watanabe, T. Lin, M. Ali, Y. Wang, V. Smet, P.M. Raj, M.M. Tentzeris, R.R. Tummala, M. Swaminathan, Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias. IEEE Trans. Microwave Theory Tech. 68(12), 5082–5092 (2020)

    Google Scholar 

  9. A.O. Watanabe, M. Ali, S.Y.B. Sayeed, R.R. Tummala, M.R. Pulugurtha, A review of 5G front-end systems package integration. IEEE Trans. Compon. Packag. Manuf. Technol. 11(1), 118–133 (2021)

    Article  CAS  Google Scholar 

  10. M. Ali, F. Liu, A. Watanabe, P.M. Raj, V. Sundaram, M.M. Tentzeris, R.R. Tummala, First demonstration of compact, ultra-thin low-pass and bandpass filters for 5G small-cell applications. IEEE Microw. Wireless Compon. Lett. 28(12), 1110–1112 (2018)

    Article  Google Scholar 

  11. M.U. Rehman, S. Ravichandran, A.O. Watanabe, S. Erdogan, M. Swaminathan, Characterization of ABF/Glass/ABF substrates for mmWave applications. IEEE Trans. Compon. Packag. Manuf. Technol. 11(3), 384–394 (2021)

    Article  CAS  Google Scholar 

  12. A.O. Watanabe, B.K. Tehrani, T. Ogawa, P.M. Raj, M.M. Tentzeris, R.R. Tummala, Ultralow-loss substrate-integrated waveguides in glass-based substrates for millimeter-wave applications. IEEE Trans. Compon. Packag. Manuf. Technol. 10(3), 531–533 (2020)

    Article  CAS  Google Scholar 

  13. I.-J. Hyeon, C.-W. Baek, Millimeter-wave substrate integrated waveguide using micromachined tungsten-coated through glass silicon via structures. Micromachines 9(4), 172 (2018)

    Article  Google Scholar 

  14. T. Kamgaing, A. A. Elsherbini, T. W. Frank, S. N. Oster, V. R. Rao, Investigation of a photodefinable glass substrate for millimeter-wave radios on package, in 2014 IEEE 64th Electronic Components and Technology Conference, (2014), pp. 1610–1615

  15. U. Shah, J. Liljeholm, J. Campion, T. Ebefors, J. Oberhammer, Low-loss, high-linearity RF interposers enabled by through glass Vias. IEEE Microwave Wirel. Compon. Lett. 28(11), 960–962 (2018)

    Article  Google Scholar 

  16. M. Tanaka, S. Kuramochi, T. Tai, Y. Sato, N. Kidera, High Frequency Characteristics of Glass Interposer, in 2020 IEEE 70th Electronic Components and Technology Conference, (2020)

  17. Q. Wang, Y. Guo, R. Wang, X-shaped Through Glass Via and Its Transmission Performance in Ka Band, in 2021 IEEE 22nd International Conference on Electronic Packaging Technology, (2021)

  18. L. Chen, D. Yu, Investigation of low-cost through glass vias formation on borosilicate glass by picosecond laser-induced selective etching. J. Mater. Sci. - Mater. Electron. 32(12), 16481–16493 (2021)

    Article  CAS  Google Scholar 

  19. A. Ebberg, J. Meggers, K. Rathjen, G. Fotheringham, I. Ndip, F. Ohnimus, C. Tschoban, I. Pieper, A. Kilian, S. Methfessel, M. Letz, U. Fotheringham, Thin glass characterization in the radio frequency range, in Advances in multifunctional materials and systems II. ed. by J. Akedo, T.Y. Tseng, X.M. Chen, H.T. Lin (John Wiley & Sons, Inc, Hoboken, 2014)

    Google Scholar 

  20. S. Sivapurapu, R. Chen, M. u. Rehman, K. Kanno, T. Kakutani, M. Letz, F. Liu, S. K. Sitaraman, M. Swaminathan, Flexible and Ultra-Thin Glass Substrates for RF Applications, in 2021 IEEE 71st Electronic Components and Technology Conference (2021), pp. 1638–1644

  21. D.C. Thompson, O. Tantot, H. Jallageas, G.E. Ponchak, M.M. Tentzeris, J. Papapolymerou, Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microwave Theory Tech. 52(4), 1343–1352 (2004)

    Article  CAS  Google Scholar 

  22. Z. Gang, H. Gronqvist, J.P. Starski, L. Johan, Characterization of liquid crystal polymer for high frequency system-in-a-package applications. IEEE Trans. on Advanced Packag. 25(4), 503–508 (2002)

    Article  Google Scholar 

  23. I. Wolff, N. Knoppik, Microstrip ring resonator and dispersion measurement on microstrip lines. Electron. Lett. 7(26), 779–781 (1971)

    Article  Google Scholar 

  24. H. Cho, J. Huang, C. Kuo, S. Liu, C. Wu, A novel transmission-line deembedding technique for RF device characterization. IEEE Trans. Electron Devices 56(12), 3160–3167 (2009)

    Article  CAS  Google Scholar 

  25. Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, G. Conciauro, Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw. Wireless Compon. Lett. 12(9), 333–335 (2002)

    Article  Google Scholar 

  26. W. Song, D. Kim, J. Park, J. Park, S. Son, Measurement of dielectric and mechanical properties of LTCC for MMW-band application, in Proc. APMC, (2009), pp. 536–539

  27. K. Yang, S. Pinel, K. Kim, J. Laskar, Millimeter-wave low-loss integrated waveguide on liquid crystal polymer substrate, in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, Jun. (2006), pp. 965–968

  28. I.J. Hyeon, W.Y. Park, S. Lim, C.W. Baek, Fully micromachined, silicon-compatible substrate integrated waveguide for millimetre-wave applications. Electron. Lett. 47(5), 328–330 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 61974121).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 61974121).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TY and DY. The first draft of the manuscript was written by TY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daquan Yu.

Ethics declarations

Competing interests

The authors declare they have no financial interests.

Ethical approval

This research does not involve Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Yu, D. Electrical performance characterization of glass substrate for millimeter-wave applications. J Mater Sci: Mater Electron 34, 126 (2023). https://doi.org/10.1007/s10854-022-09583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09583-x

Navigation