Skip to main content
Log in

Magnetoelectric coupling study of lead-free BaTiO3/NiFe2O4 mixed and core–shell multiferroic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free multiferroic magnetoelectric mixed and core shell composites of BaTiO3 and NiFe2O4 were synthesised by a two-step process. The structural, morphological, electrical, magnetic and dielectric properties of the as prepared samples were investigated in detail. XRD—Rietveld refinement (using JANA 2006 program) confirms the co-existence of two phases in the composite. The dielectric, ferroelectric and ferromagnetic properties of the systems was studied. The enhanced remanent polarization of core shell composite compared to pure BaTiO3 is the direct evidence of formation of core shell structure. The decrease in saturation values of composites can be attributed to the presence of nonmagnetic BaTiO3. The magnetoelectric coupling studies on BaTiO3@NiFe2O4 core–shell system exhibits enhancement due to the well-defined interface between the two phases. The sensitivity of electric properties to the applied magnetic field enables the systems for possible applications in magnetoelectric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010). https://doi.org/10.1002/adma.200904326

    Article  CAS  Google Scholar 

  2. C.E. Ciomaga, L. Mitoseriu, Ferroelectric perovskite–spinel ferrite ceramics, in Magnetic, ferroelectric, and multiferroic metal oxides. ed. by B.D. Stojanovic (Elsevier, Amsterdam, 2018), pp.433–456

    Chapter  Google Scholar 

  3. P. N. O, C. Zn, F. Mn., dthftfsrh (Rep, Sci, 2021). https://doi.org/10.1038/s41598-021-82399-7

    Book  Google Scholar 

  4. P. Taylor, P. Hajra, R. Maiti, D. Chakravorty, Trans. Indian Ceram. Soc. (2013). https://doi.org/10.1080/0371750X.2011.10600149

    Article  Google Scholar 

  5. C. Pascual-gonzalez, G. Schileo, A. Feteira, Single-phase, composite and laminate multiferroics, in Magnetic, ferroelectric, and multiferroic metal oxides. ed. by B.D. Stojanovic (Elsevier, Amsterdam, 2018), pp.457–484

    Chapter  Google Scholar 

  6. W. Eerenstein, ND. Mathur, JF. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  7. A. Amouri, S. Aydi, N. Abdelmoula, H. Dammak, H. Khemakhem, J. Alloys Compd. (2018). https://doi.org/10.1016/jjallcom2017.12.101

    Article  Google Scholar 

  8. J. Ma, J. Hu, Z. Li, C. Nan, Adv. Mater. (2011). https://doi.org/10.1002/adma.201003636

    Article  Google Scholar 

  9. S. Satapathy, G. Prudhvi, A. Ali, P. Deshmukh, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.156960

    Article  Google Scholar 

  10. R. Revathy, R.M. Thankachan, N. Kalarikkal, M.R. Varma, K.P. Surendran, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160579

    Article  Google Scholar 

  11. S.V. Meenakshi, R. Saravanan, N. Srinivasan, O.V. Saravanan, D. Dhayanithi, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08481-4

    Article  Google Scholar 

  12. P. Bongurala, V. Gorige, J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.12.014

    Article  Google Scholar 

  13. A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/jjmmm2016.02.065i

    Article  Google Scholar 

  14. S. Umashankar, T. Parida, K.R. Kumar, K.K. Bharathi, T. Parida, K.R. Kumar, A.M. Strydom, G. Markandeyulu, K. Kamala, C.M. Interactions, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.05.002

    Article  Google Scholar 

  15. N.A. Spaldin, R. Ramesh, Nat. Mater. (2019). https://doi.org/10.1038/s41563-018-0275-2

    Article  Google Scholar 

  16. D. Padmapriya, D. Dhayanithi, M.T. Rahul, N. Kalarikkal, N.V. Giridharan, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021). https://doi.org/10.1007/s00339-021-04431-x

    Article  CAS  Google Scholar 

  17. A. Chaudhuri, K. Mandal, J. Magn. Magn. Mater. 377, 441 (2015). https://doi.org/10.1016/j.jmmm.2014.10.142

    Article  CAS  Google Scholar 

  18. R.M. Thankachan, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.09.309

    Article  Google Scholar 

  19. S.Y. Tan, S.R. Shannigrahi, S.H. Tan, F.E.H. Tay, J. Appl. Phys. (2010). https://doi.org/10.1063/1.2917394

    Article  Google Scholar 

  20. A.S. Dzunuzovic, M.M.V. Petrovic, B.S. Stojadinovic, N.I. Ilic, J.D. Bobic, Ceram. Int. 41, 13189 (2015). https://doi.org/10.1016/j.ceramint.2015.07.096

    Article  CAS  Google Scholar 

  21. R. Chauhan, R.C. Srivastava, Pramana –. J. Phys. (2016). https://doi.org/10.1007/s12043-016-1263

    Article  Google Scholar 

  22. Y. Xue, R. Xu, Z. Wang, X. Deng, W.E.I. Cai, C. Fu (2019). https://doi.org/10.1007/s11664-019-07261-z

    Article  Google Scholar 

  23. X. Luo, H. Wang, R. Gao, X. Li, J. Zhang, H. Ban (2020). https://doi.org/10.2298/PAC2002091L

    Article  Google Scholar 

  24. K.C. Dhanyaprabha, B. Jacob, M. Mohan, I.A. Al-omari, S.H. Al-harthi, M.T.Z. Myint, H. Thomas, Phys. Status Solidi A (2021). https://doi.org/10.1002/pssa.202100193

    Article  Google Scholar 

  25. M.M. Devi, A. Anand, R.K. Veena, K. Nandakumar, S. Sagar, J. Mater. Sci. Mater. Electron. 32, 27073 (2021). https://doi.org/10.1007/s10854-021-07078-9

    Article  CAS  Google Scholar 

  26. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  27. V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift Fur Krist. 229, 345 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  28. B. Sarkar, S. Ramkrishna, S. Vidya, V.D. Ashok, K. Chakrabarti, J. Appl. Phys. (2014). https://doi.org/10.1063/1.4869782

    Article  Google Scholar 

  29. K. Chand, D. Singh, S. Kumar, R.K. Kotnala, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.145

    Article  Google Scholar 

  30. R. Ramesh, N.A. Spaldin, Nat. Mater (2007). https://doi.org/10.1038/nmat1805

    Article  Google Scholar 

  31. K.C. Verma, R.K. Kotnala, J. Solid State Chem. (2016). https://doi.org/10.1016/j.jssc.2016.02.015

    Article  Google Scholar 

  32. M. Cernea, B.S. Vasile, I.V. Ciuchi, V.A. Surdu, C. Bartha, A. Iuga, P. Galizia, C. Galassi, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2264-x

    Article  Google Scholar 

  33. N. Najmoddin, A. Beitollahi, H. Kavas, S. Majid, H. Rezaie, Ceram. Int (2014). https://doi.org/10.1016/j.ceramint.2013.09.063

    Article  Google Scholar 

  34. R. Revathy, N. Kalarikkal, M.R. Varma, K.P. Surendran, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161667

    Article  Google Scholar 

  35. A.R. Abraham, B. Raneesh, S. Joseph, M. Arif, P.M.G. Nambissan, D. Das, D. Rouxel, O.S. Oluwafemi, O.S. Oluwafemi, S. Thomas, N. Kalarikkal, Phys. Chem. Chem. Phys. 21, 8709–8720 (2019). https://doi.org/10.1039/C8CP04946G

    Article  CAS  Google Scholar 

  36. T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, P. Saravanan, M.V.R. Reddy, N. Kalarikkal, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.08.277

    Article  Google Scholar 

  37. R. Grigalaitis, M.M. Vijatovi, J.D. Bobi, A. Dzunuzovic, R. Sobiestianskas, Ceram. Int (2014). https://doi.org/10.1016/j.ceramint.2013.11.069

    Article  Google Scholar 

  38. L. Sirdeshmukh, K.K. Kumar, S.B. Laxman, A.R. Krishna, G. Sathaiah, Bull. Mater. Sci. (1998). https://doi.org/10.1007/BF02744973

    Article  Google Scholar 

  39. P.K. Jana, S. Sarkar, B.K. Chaudhuri, J. Phys. D: Appl. Phys. (2007). https://doi.org/10.1088/0022-3727/40/2/033

    Article  Google Scholar 

  40. A. Kumar, K.L. Yadav, Physica B (2011). https://doi.org/10.1016/j.physb.2011.02.023

    Article  Google Scholar 

  41. C.G. Koops, Phys. Rev. (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  Google Scholar 

  42. A. Gupta, R. Chatterjee, J. Eur. Ceram. Soc. 33, 1017 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.003

    Article  CAS  Google Scholar 

  43. N. Ortega, A. Kumar, R.S. Katiyar, Structural, dielectric, electrical and magnetic properties of multiferroic BaTiO3-NiFe2O4 composite ceramic. 2008 IEEE International Symposium on the Applications of Ferroelectrics IEEE (2008). https://doi.org/10.1109/ISAF.2008.4693790

    Article  Google Scholar 

  44. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, J. Alloys Compd. 493, 601 (2010). https://doi.org/10.1016/j.jallcom.2009.12.164

    Article  CAS  Google Scholar 

  45. D.K. Pradhan, S. Kumari, P.D. Rack, Nanomaterials (2020). https://doi.org/10.3390/nano10102072

    Article  Google Scholar 

  46. G.V. Duong, R. Groessinger, M. Schoenhart, D. Bueno-basques, J. Magn. Magn. Mater. (2007). https://doi.org/10.1016/j.jmmm.2007.03.185

    Article  Google Scholar 

  47. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaram, Bull. Mater. Sci. 21, 251 (1998). https://doi.org/10.1007/BF02744978

    Article  CAS  Google Scholar 

  48. J.P. Zhou, L. Lv, Q. Liu, Y.X. Zhang, P. Liu, Sci. Technol. Adv. Mater. (2012). https://doi.org/10.1088/1468-6996/13/4/045001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CLIF Kariavattom, and Sultan Qaboos University Oman, for providing XRD, XPS and VSM measurement facilities. The authors also thank Dr Rajeev Rawat, UGC DAE Indore centre for dielectric study and Satish Yadav for the analysis of the result. The authors are grateful to Dr Nandakumar Kalarikkal, Rahul M T and Anu A S of IIUCNN, MG University Kottayam for ME measurement and HRTEM measurement. Author K C Dhanyaprabha wishes to acknowledge Department of Science and Technology, India for the financial support under WOS-A (SR/WOS-A/PM-65/2017) scheme. Hysen Thomas acknowledge financial support received from KSCSTE under SRS project scheme (KSCSTE/1483/2019).

Funding

Funding was provided by Department of Science and Technology under women scientist scheme A (WOS-A [SR/WOS-A/PM-65/2017]) and KSCSTE under SRS project scheme (KSCSTE/1483/2019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed and participated in conception, design, analysis and interpretation, also the final manuscript was approved by them.

Corresponding author

Correspondence to Hysen Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanyaprabha, K.C., Jacob, B., Mohan, M. et al. Magnetoelectric coupling study of lead-free BaTiO3/NiFe2O4 mixed and core–shell multiferroic composites. J Mater Sci: Mater Electron 34, 207 (2023). https://doi.org/10.1007/s10854-022-09570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09570-2

Navigation