Skip to main content

Advertisement

Log in

High-performance α-FAPbI3 perovskite solar cells with an optimized interface energy band alignment by a Zn(O,S) electron transport layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Short-circuit current density (Jsc) losses in perovskite solar cells are one of the main bottlenecks despite the acceptable open-circuit voltage (Voc) because of the suitable and wide bandgap of the absorber. A solution to reduce the Jsc losses is introducing a suitable n-type electron transport layer (ETL) with a spike-like alignment at the ETL/absorber junction. In this paper, the Zn(O,S) ETL in α-FAPbI3 perovskite cell has been proposed, and the impact of Zn(O,S) ETL on the performance cell has been investigated. The results indicate that the sulfur ratios in the proposed Zn(O,S) ETL substantially affect the optimization of energy levels of the conduction band at the α-FAPbI3/Zn(O,S) junction. The flexibility with ZnO1−xSx ETL ranging from 60 to 70% sulfur makes it possible to form an ideal conduction band offset (CBO) at absorber/ETL junction in α-FAPbI3 perovskite solar cells. Based on the external quantum efficiency (EQE), Zn(O,S) ETL with an efficient response to high-energy photons than conventional TiO2 ETL reduces absorption losses and improves the Jsc. The CBO of ~ 0.1 eV with a thin ZnO0.35S0.65 on top of the α-FAPbI3 absorber led to an increase of Voc to 1.21 V, Jsc to 27.2 mA/cm2, and fill factor (FF) to 82%, resulting in an efficiency of 27%. According to impedance spectroscopy analysis, this improvement is related to the excellent transport of carriers across the α-FAPbI3/ZnO0.35S0.65 interface due to the reduction of interface recombination by spike-like band alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer, Y. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.B. Kim, S.I. Mo, Y.K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Grätzel, D.S. Kim, Conformal quantum dot–SnO 2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022). https://doi.org/10.1126/science.abh1885

    Article  CAS  Google Scholar 

  2. X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022). https://doi.org/10.1126/science.abl5676

    Article  CAS  Google Scholar 

  3. Y. Zhang, N.G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7, 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645

    Article  CAS  Google Scholar 

  4. J.J. Yoo, S.S. Shin, J. Seo, Toward efficient perovskite solar cells: progress strategies, and perspectives. ACS Energy Lett. 7, 2084–2091 (2022). https://doi.org/10.1021/acsenergylett.2c00592

    Article  CAS  Google Scholar 

  5. J. Cao, H. Loi, Y. Xu, X. Guo, N. Wang, C. Liu, T. Wang, H. Cheng, Y. Zhu, M.G. Li, W. Wong, F. Yan, High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34, 2107729 (2022). https://doi.org/10.1002/adma.202107729

    Article  CAS  Google Scholar 

  6. G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang, G. Xing, Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34, 2105635 (2022). https://doi.org/10.1002/adma.202105635

    Article  CAS  Google Scholar 

  7. S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li, Q. Chen, Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15, 13–55 (2022). https://doi.org/10.1039/D1EE02882K

    Article  CAS  Google Scholar 

  8. H. Taherianfard, G.W. Kim, F. Ebadi, T. Abzieher, K. Choi, U.W. Paetzold, B.S. Richards, A. Alrhman Eliwi, F. Tajabadi, N. Taghavinia, M. Malekshahi Byranvand, Perovskite/hole transport layer interface improvement by solvent engineering of Spiro-OMeTAD precursor solution. ACS Appl. Mater. Interfaces. 11(2019), 44802–44810 (2019). https://doi.org/10.1021/acsami.9b10828

    Article  CAS  Google Scholar 

  9. G.W. Kim, G. Kang, M. Malekshahi Byranvand, G.Y. Lee, T. Park, Gradated mixed hole transport layer in a perovskite solar cell: improving moisture stability and efficiency. ACS Appl Mater. Interfaces. 9, 27720–27726 (2017). https://doi.org/10.1021/acsami.7b07071

    Article  CAS  Google Scholar 

  10. M.M. Byranvand, M. Saliba, Charge carrier management for developing high-efficiency perovskite solar cells. Matter. 4, 1758–1759 (2021). https://doi.org/10.1016/j.matt.2021.04.020

    Article  CAS  Google Scholar 

  11. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5

    Article  CAS  Google Scholar 

  12. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Solar cell efficiency tables (Version 60). Prog. Photovoltaics Res. Appl. 30, 687–701 (2022). https://doi.org/10.1002/pip.3595

    Article  Google Scholar 

  13. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, Cd-Free Cu(In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovoltaics. 9, 1863–1867 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937218

    Article  Google Scholar 

  14. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133

    Article  CAS  Google Scholar 

  15. R. Ali, Z.G. Zhu, Q.B. Yan, Q.R. Zheng, G. Su, A. Laref, C.S. Saraj, C. Guo, Compositional engineering study of lead-free hybrid perovskites for solar cell applications. ACS Appl. Mater. Interfaces. 12, 49636–49647 (2020). https://doi.org/10.1021/acsami.0c14595

    Article  CAS  Google Scholar 

  16. V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014). https://doi.org/10.1021/ja511198f

    Article  CAS  Google Scholar 

  17. H. Lu, A. Krishna, S.M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. IScience. 23, 101359 (2020). https://doi.org/10.1016/j.isci.2020.101359

    Article  CAS  Google Scholar 

  18. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  19. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an Organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  20. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured Organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  21. Y. Zhang, G. Grancini, Y. Feng, A.M. Asiri, M.K. Nazeeruddin, Optimization of stable quasi-cubic FA x MA 1–x PbI 3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2, 802–806 (2017). https://doi.org/10.1021/acsenergylett.7b00112

    Article  CAS  Google Scholar 

  22. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014). https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  23. J. Jeong, H. Kim, Y.J. Yoon, B. Walker, S. Song, J. Heo, S.Y. Park, J.W. Kim, G.H. Kim, J.Y. Kim, Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Adv. 8, 24110–24115 (2018). https://doi.org/10.1039/C8RA02637H

    Article  CAS  Google Scholar 

  24. J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323

    Article  CAS  Google Scholar 

  25. Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M.M. Maitani, R. Jono, T.N. Murakami, H. Wang, T. Kubo, S. Uchida, H. Segawa, Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183 (2017). https://doi.org/10.1038/s41598-017-12436-x

    Article  CAS  Google Scholar 

  26. G. Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J. Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami, H. Segawa, S. Hayase, Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Lett. 18, 3600–3607 (2018). https://doi.org/10.1021/acs.nanolett.8b00701

    Article  CAS  Google Scholar 

  27. S. Hayase, Research following Pb perovskite solar cells. Electrochemistry 85, 222–225 (2017). https://doi.org/10.5796/electrochemistry.85.222

    Article  CAS  Google Scholar 

  28. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys. Rev. Lett. 97, 146403 (2006). https://doi.org/10.1103/PhysRevLett.97.146403

    Article  CAS  Google Scholar 

  29. S. Sharbati, I. Gharibshahian, A.A. Orouji, Proposed suitable electron reflector layer materials for thin-film CuIn1−xGaxSe2 solar cells. Opt. Mater. (Amst) 75, 216–223 (2018). https://doi.org/10.1016/j.optmat.2017.09.032

    Article  CAS  Google Scholar 

  30. I. Gharibshahian, S. Sharbati, A.A. Orouji, Potential efficiency improvement of Cu (In, Ga) Se2 thin-film solar cells by the window layer optimization. Thin Solid Films 655, 95–104 (2018). https://doi.org/10.1016/j.tsf.2018.04.014

    Article  CAS  Google Scholar 

  31. F. Ghamsari-Yazdel, I. Gharibshahian, S. Sharbati, Thin oxide buffer layers for avoiding leaks in CIGS solar cells; a theoretical analysis. J. Mater. Sci. Mater. Electron. 32, 7598–7608 (2021). https://doi.org/10.1007/s10854-021-05476-7

    Article  CAS  Google Scholar 

  32. F.S. Ahmadpanah, A.A. Orouji, I. Gharibshahian, Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer. J. Mater. Sci. Mater. Electron. 32, 22535–22547 (2021). https://doi.org/10.1007/s10854-021-06740-6

    Article  CAS  Google Scholar 

  33. S. Sharbati, J.R. Sites, Impact of the band offset for n-Zn(O, S)/p-Cu(In, Ga)Se$_{2}$ solar cells. IEEE J. Photovoltaics. 4, 697–702 (2014). https://doi.org/10.1109/JPHOTOV.2014.2298093

    Article  Google Scholar 

  34. T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells. 133, 8–14 (2015). https://doi.org/10.1016/j.solmat.2014.10.036

    Article  CAS  Google Scholar 

  35. M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 3, 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014

    Article  CAS  Google Scholar 

  36. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  37. W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249 (2013). https://doi.org/10.1039/c3ee42282h

    Article  CAS  Google Scholar 

  38. Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, S. Kazim, Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study. Sol. Energy. 193, 948–955 (2019). https://doi.org/10.1016/j.solener.2019.10.009

    Article  CAS  Google Scholar 

  39. S. Taheri, A. Ahmadkhan Kordbacheh, M. Minbashi, A. Hajjiah, Effect of defects on high efficient perovskite solar cells. Opt Mater (Amst). 111, 110601 (2021). https://doi.org/10.1016/j.optmat.2020.110601

    Article  CAS  Google Scholar 

  40. R. Jeyakumar, A. Bag, R. Nekovei, R. Radhakrishnan, Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency. Sol. Energy. 190, 104–111 (2019). https://doi.org/10.1016/j.solener.2019.07.097

    Article  CAS  Google Scholar 

  41. Y. Raoui, H. Ez-Zahraouy, S. Kazim, S. Ahmad, Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. J. Energy Chem. 54, 822–829 (2021). https://doi.org/10.1016/j.jechem.2020.06.030

    Article  CAS  Google Scholar 

  42. M. Badrooj, F. Jamali-Sheini, N. Torabi, Roles of Sn content in physical features and charge transportation mechanism of Pb-Sn binary perovskite solar cells. Sol. Energy. 209, 590–601 (2020). https://doi.org/10.1016/j.solener.2020.09.019

    Article  CAS  Google Scholar 

  43. M.K. Otoufi, M. Ranjbar, A. Kermanpur, N. Taghavinia, M. Minbashi, M. Forouzandeh, F. Ebadi, Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: roles of the interfacial layers. Sol. Energy. 208, 697–707 (2020). https://doi.org/10.1016/j.solener.2020.08.035

    Article  CAS  Google Scholar 

  44. A.A.B. Baloch, M.I. Hossain, N. Tabet, F.H. Alharbi, Practical efficiency limit of methylammonium lead iodide perovskite (CH 3 NH 3 PbI 3) solar cells. J. Phys. Chem. Lett. 9, 426–434 (2018). https://doi.org/10.1021/acs.jpclett.7b03343

    Article  CAS  Google Scholar 

  45. F. Izadi, A. Ghobadi, A. Gharaati, M. Minbashi, A. Hajjiah, Effect of interface defects on high efficient perovskite solar cells. Optik (Stuttg). 227, 166061 (2021). https://doi.org/10.1016/j.ijleo.2020.166061

    Article  CAS  Google Scholar 

  46. M. Buffière, S. Harel, C. Guillot-Deudon, L. Arzel, N. Barreau, J. Kessler, Effect of the chemical composition of co-sputtered Zn(O, S) buffer layers on Cu(In, Ga)Se 2 solar cell performance. Phys. Status Solidi. 212, 282–290 (2015). https://doi.org/10.1002/pssa.201431388

    Article  CAS  Google Scholar 

  47. L.Y. Lin, Y. Qiu, Y. Zhang, H. Zhang, Analysis of effect of Zn(O, S) buffer layer properties on CZTS solar cell performance using AMPS. Chinese Phys. Lett. 33, 107801 (2016). https://doi.org/10.1088/0256-307X/33/10/107801

    Article  Google Scholar 

  48. R. Chen, J. Cao, Y. Duan, Y. Hui, T.T. Chuong, D. Ou, F. Han, F. Cheng, X. Huang, B. Wu, N. Zheng, High-efficiency, hysteresis-less, UV-stable perovskite solar cells with Cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019). https://doi.org/10.1021/jacs.8b11001

    Article  CAS  Google Scholar 

  49. I.R. Pala, S.L. Brock, ZnS nanoparticle gels for remediation of Pb 2+ and Hg 2+ polluted water. ACS Appl. Mater. Interfaces. 4, 2160–2167 (2012). https://doi.org/10.1021/am3001538

    Article  CAS  Google Scholar 

  50. I. Gharibshahian, A.A. Orouji, S. Sharbati, Towards high efficiency Cd-free Sb2Se3 solar cells by the band alignment optimization. Sol. Energy Mater. Sol. Cells. 212, 110581 (2020). https://doi.org/10.1016/j.solmat.2020.110581

    Article  CAS  Google Scholar 

  51. I. Gharibshahian, A.A. Orouji, S. Sharbati, Efficient Sb2(S, Se)3/Zn(O, S) solar cells with high open-circuit voltage by controlling sulfur content in the absorber-buffer layers. Sol. Energy. 227, 606–615 (2021). https://doi.org/10.1016/j.solener.2021.09.039

    Article  CAS  Google Scholar 

  52. R. Scheer, Activation energy of heterojunction diode currents in the limit of interface recombination. J. Appl. Phys. 105, 104505 (2009). https://doi.org/10.1063/1.3126523

    Article  CAS  Google Scholar 

  53. A. Bou, A. Pockett, D. Raptis, T. Watson, M.J. Carnie, J. Bisquert, Beyond impedance spectroscopy of perovskite solar cells: insights from the spectral correlation of the electrooptical frequency techniques. J. Phys. Chem. Lett. 11, 8654–8659 (2020). https://doi.org/10.1021/acs.jpclett.0c02459

    Article  CAS  Google Scholar 

  54. A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits. Chem. Rev. 121, 14430–14484 (2021). https://doi.org/10.1021/acs.chemrev.1c00214

    Article  CAS  Google Scholar 

  55. M. Ishaq, H. Deng, S. Yuan, H. Zhang, J. Khan, U. Farooq, H. Song, J. Tang, Efficient double buffer layer Sb 2 (Se x S 1–x ) 3 thin film solar cell via single source evaporation. Sol. RRL. 2, 1800144 (2018). https://doi.org/10.1002/solr.201800144

    Article  CAS  Google Scholar 

  56. M. Kuik, L.J.A. Koster, G.A.H. Wetzelaer, P.W.M. Blom, Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011). https://doi.org/10.1103/PhysRevLett.107.256805

    Article  CAS  Google Scholar 

  57. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Frank Liu, R.P.H. Chang, Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016). https://doi.org/10.1039/C6EE02139E

    Article  CAS  Google Scholar 

  58. M.A. Green, Accuracy of analytical expressions for solar cell fill factors. Sol. Cells. 7, 337–340 (1982). https://doi.org/10.1016/0379-6787(82)90057-6

    Article  CAS  Google Scholar 

  59. Y. Xiang, Z. Ma, X. Peng, X. Li, B. Chen, Y. Huang, Constructing graded perovskite homojunctions by adding large radius phenylmethylamine ions for sequential spin-coating deposition method to improve the efficiency of perovskite solar cells. J. Phys. Chem. C. 124, 20765–20772 (2020). https://doi.org/10.1021/acs.jpcc.0c06365

    Article  CAS  Google Scholar 

  60. Z. Saki, K. Sveinbjörnsson, G. Boschloo, N. Taghavinia, The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells. ChemPhysChem 20, 3322–3327 (2019). https://doi.org/10.1002/cphc.201900856

    Article  CAS  Google Scholar 

  61. C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong, X. Hu, W. Cai, S. Zhao, J. Chen, Z. Zang, Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 63, 452–460 (2021). https://doi.org/10.1016/j.jechem.2021.07.011

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the idea, the simulation of the research, the analysis of the results, and the writing of the manuscript.

Corresponding author

Correspondence to Dariush Madadi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madadi, D., Gharibshahian, I. & Orouji, A.A. High-performance α-FAPbI3 perovskite solar cells with an optimized interface energy band alignment by a Zn(O,S) electron transport layer. J Mater Sci: Mater Electron 34, 51 (2023). https://doi.org/10.1007/s10854-022-09565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09565-z

Navigation