Skip to main content
Log in

Sintering characteristics, crystal structure, and microwave dielectric properties of non-stoichiometric BaMg2V2+xO8 (0.04 ≤ x ≤ 0.16) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaMg2V2+xO8 (0.04 ≤ x ≤ 0.16) ceramics with high quality factors were prepared by the conventional solid-state reaction method at 850–925 °C, which can meet the LTCC technology. The effects of non-stoichiometric V5+ ions on sintering characteristics, phase composition, microstructure, as well as on microwave dielectric properties have been analyzed. All ceramic samples synthesized with different non-stoichiometric ratios of V5+ ions had a single tetragonal structure phase which belonged to the I41/acd (142) space group. The τf value of BaMg2V2+xO8 (0.04 ≤ x ≤ 0.16) ceramics was adjusted without deteriorating \(Q \times f\) value by adding excessive V5+ ions, and \(Q \times f\) value was found to correlate with relative density and the average lattice energy of V–O bonds while the τf value correlating with the total bond energy. The BaMg2V2.12O8 ceramics sintered at 900 °C showed an optimal \(Q \times f\) value of 141, 014 GHz, with \(\varepsilon_{{\text{r}}}\) of 12.4 and τf of − 14.25 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  1. M. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)

    Article  Google Scholar 

  2. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)

    Google Scholar 

  3. H. Zuo, X. Tang, H. Zhang et al., Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)

    Article  CAS  Google Scholar 

  4. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  5. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20, 151–170 (2016)

    Article  CAS  Google Scholar 

  6. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  7. X. Chen, H. Zhou, L. Fang et al., Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compd. 509, 5829–5832 (2011)

    Article  CAS  Google Scholar 

  8. P. Zhang, L. Liu, M. Xiao, et al., A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1−xMnx)2NbO6 system. J. Mater. Sci. Mater. Electron. 28, 12220–12225 (2017)

  9. P. Zhang, L. Liu, M. Xiao, Microwave dielectric properties of high Q and temperature stable Li3 (Mg1−xNix)2NbO6 ceramics. J. Mater. Sci. Mater. Electron. 29, 5057–5063 (2018)

    Article  CAS  Google Scholar 

  10. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102, 2278–2282 (2019)

    Article  CAS  Google Scholar 

  11. I.N. Jawahar, M.T. Sebastian, P. Mohanan, Microwave dielectric properties of Ba5-xSrTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4-xO15 ceramics. Mater. Sci. Eng. B 106, 207–212 (2004)

    Article  Google Scholar 

  12. I. Radosavljevic, A. Sleight, Variable temperature X-ray diffraction study of bismuth magnesium vanadate, BiMg2VO6. J. Solid State Chem. 149, 143–148 (2000)

    Article  CAS  Google Scholar 

  13. X. Xun, S. Uma, A. Yokochi et al., Synthesis and structure of new BiMn2MO6 compounds where M= P, As, or V. J. Solid State Chem. 167, 245–248 (2002)

    Article  CAS  Google Scholar 

  14. G. Yao, P. Liu, H. Zhang, Novel series of low-firing microwave dielectric ceramics: Ca5A4 (VO4) 6 (A2+= Mg, Zn). J. Am. Ceram. Soc. 96, 1691–1693 (2013)

    Article  CAS  Google Scholar 

  15. R. Umemura, H. Ogawa, H. Ohsato et al., Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J. Eur. Ceram. Soc. 25, 2865–2870 (2005)

    Article  CAS  Google Scholar 

  16. S.E. Nunes, C.-H. Wang, K. So et al., Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure. J. Solid State Chem. 222, 12–17 (2015)

    Article  Google Scholar 

  17. G. Yao, C. Pei, P. Liu et al., Microwave dielectric properties of low temperature sintering Ca5Mn4 (VO4)6 ceramics. Ceram. Int. 27, 7292–7296 (2016)

    CAS  Google Scholar 

  18. G. Yao, C. Pei, P. Liu et al., Low temperature sintering and microwave dielectric properties of Ca5Ni4 (VO4)6 ceramics. Ceram. Int. 43, S334–S338 (2017)

    Article  CAS  Google Scholar 

  19. R. Umemura, H. Ogawa, A. Kan, Low temperature sintering and microwave dielectric properties of (Mg3− xZnx)(VO4) 2 ceramics. J. Eur. Ceram. Soc. 26, 2063–2068 (2006)

    Article  CAS  Google Scholar 

  20. R. Umemura, H. Ogawa, A. Yokoi et al., Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic. J. Alloys Compd. 424, 388–393 (2006)

    Article  CAS  Google Scholar 

  21. K. Surendran, P. Bijumon, P. Mohanan et al., (1–x) MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823–826 (2005)

    Article  CAS  Google Scholar 

  22. X. Zhou, L. Liu, J. Sun et al., Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10, 778–789 (2021)

    Article  CAS  Google Scholar 

  23. J.D. Breeze, X. Aupi, N.M. Alford, Ultralow loss polycrystalline alumina. Appl. Phys. Lett. 81, 5021–5023 (2002)

    Article  CAS  Google Scholar 

  24. K. Surendran, N. Santha, P. Mohanan et al., Temperature stable low loss ceramic dielectrics in (1–x) ZnAl2O4-xTiO2 system for microwave substrate applications. Appl. Phys. A 41, 301–306 (2004)

    CAS  Google Scholar 

  25. J. Bao, J. Du, L. Liu et al., A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceram. Int. 48, 784–794 (2022)

    Article  CAS  Google Scholar 

  26. B. Masin, K. Ashok, S. Vishnu et al., Temperature-compensated BaV2O6-Ba2V2O7 ceramic composite for ULTCC applications. Ceram. Int. 48, 22479–22485 (2022)

    Article  Google Scholar 

  27. S. Meng, Z. Yue, H. Zhuang et al., Microwave dielectric properties of Ba3 (VO4)2–Mg2SiO4 composite ceramics. J. Am. Ceram. Soc. 93, 359–361 (2010)

    Article  CAS  Google Scholar 

  28. H. Ogawa, A. Yokoi, R. Umemura et al., Microwave dielectric properties of Mg3(VO4)2-xBa3(VO4)2 ceramics for LTCC with near zero temperature coefficient of resonant frequency. J. Eur. Ceram. Soc. 27, 3099–3104 (2007)

    Article  CAS  Google Scholar 

  29. Y. Wang, R. Zuo, A novel low-temperature fired microwave dielectric ceramic BaMg2V2O8 with ultra-low loss. J. Eur. Ceram. Soc. 36, 247–251 (2016)

    Article  Google Scholar 

  30. Y. Wang, R. Zuo, Structure and microwave dielectric properties of Ba1−xSrxMg2V2O8 ceramics. Ceram. Int. 42, 10801–10807 (2016)

    Article  CAS  Google Scholar 

  31. W. Liu, Y. Wang, R. Zuo, Effect of non-stoichiometry on the structure and microwave dielectric properties of BaMg2V2O8 ceramics. J. Mater. Sci. Mater. Electron. 28, 16192–16198 (2017)

    Article  CAS  Google Scholar 

  32. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  33. H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1−xCox)3TiO6 (0≤ x≤ 04) ceramics. Ceram. Int. 43, 15018–15026 (2017)

    Article  CAS  Google Scholar 

  34. E.S. Kim, D.H. Kang, Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+) xTi1− xO2 (B5+= Nb, Ta) ceramics. Ceram. Int. 34, 883–888 (2008)

    Article  CAS  Google Scholar 

  35. H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2 (Mg1−xCox)3TiO6 (0≤ x≤ 0.4) ceramics. Ceram. Int. 43, 15018–15026 (2017)

    Article  CAS  Google Scholar 

  36. S.J. Penn, N.M. Alford, A. Templeton et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  37. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  38. R.D. Shannon, G.R. Rossman, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Miner. 77, 94–100 (1992)

    CAS  Google Scholar 

  39. C. Huang, W. Yang, P. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1− xNix) 3Nb2O8 ceramics. J. Eur. Ceram. Soc. 34, 277–284 (2014)

    Article  CAS  Google Scholar 

  40. W. Xia, L. Li, P. Ning et al., Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn (Ta1−xNbx) 2O6 ceramics. J. Am. Ceram. Soc. 95, 2587–2592 (2012)

    Article  CAS  Google Scholar 

  41. B. Levine, Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures. Phys. Rev. B 7, 2600 (1973)

    Article  CAS  Google Scholar 

  42. Z. Wu, S. Zhang, Semiempirical method for the evaluation of bond covalency in complex crystals. J. Phys. Chem. A 103, 4270–4274 (1999)

    Article  CAS  Google Scholar 

  43. D. Iddles, A. Bell, A. Moulson, Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics. J. Mater. Sci. 27, 6303–6310 (1992)

    Article  CAS  Google Scholar 

  44. Z.J. Wu, Q.B. Meng, S.Y. Zhang, Preliminary study on the charge transfer and bond ionicity of binary crystals. J. Chem. Phys. 109, 5508–5510 (1998)

    Article  CAS  Google Scholar 

  45. S.Y. Zhang, F.M. Gao, C.X. Wu, Chemical bond properties of rare earth ions in crystals. J. Alloys Compd. 275, 835–837 (1998)

    Article  Google Scholar 

  46. P. Zhang, Y. Zhao, X. Wang, The correlations between electronic polarizability, packing fraction, bond energy and microwave dielectric properties of Nd(Nb1-xSbx)O4 ceramics. J. Alloys Compd. 644, 621–625 (2015)

    Article  CAS  Google Scholar 

  47. R.T. Sanderson, Interrelationship of bond-dissociation energies and contributing bond-energies. J. Am. Chem. Soc. 97, 1367–1372 (1975)

    Article  CAS  Google Scholar 

  48. R.T. Sanderson, Electronegativity and bond-energy. J. Am. Chem. Soc. 105, 2259–2261 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Major Projects of Science and Technology in Tianjin (No. 18ZXJMTG00020)

Author information

Authors and Affiliations

Authors

Contributions

PZ contributed to funding acquisition, conceived and designed the work and revised the manuscript. XF performed the experiment, completed the data analyses and wrote the original manuscript. MH helped perform the analysis with constructive discussions. XT contributed to supervision, reviewed and edited the manuscript.

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Written informed consent for participation was obtained from all participants.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Fan, X., Hao, M. et al. Sintering characteristics, crystal structure, and microwave dielectric properties of non-stoichiometric BaMg2V2+xO8 (0.04 ≤ x ≤ 0.16) ceramics. J Mater Sci: Mater Electron 34, 231 (2023). https://doi.org/10.1007/s10854-022-09558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09558-y

Navigation