Skip to main content

Advertisement

Log in

Microwave-assisted synthesis of a ternary MoS2/carbon-FeOx composites with 3D hierarchical nanostructure for lithium-ion battery application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) carbon matrix composites have been widely used in the field of lithium-ion batteries due to their unique structure and properties. In this work, we employ a rapid method to synthesize a ternary composite (MoS2/carbon-FeOx) with a 3D hierarchical nanostructure via hydrothermal and microwave irradiation treatment. The 3D hierarchical nanostructure is composed of 0D nanoparticles (ultra-small iron oxide), 1D carbon nanotubes, and 2D nanosheets (MoS2 nanoflowers and graphene), providing extraordinary mechanical and electrochemical stability during the lithiation/delithiation process. As expected, when employed as an anode material, the 3D hierarchical nanostructure delivered a high reversible capacity of 740 mAh g–1 without any fading tendency after 100 cycles at a current density of 0.2 A·g–1, and retained over 508 mAh g–1 even surveyed by a high current density of 2 A g–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data, models, or code generated or used during the study are available in a repository or online in accordance with funder data retention policies.

References

  1. M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater 2101126, 11 (2021)

    Google Scholar 

  2. J. Li, J. Fleetwood, W.B. Hawley, W. Kays, From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 903–956, 122 (2022)

    Google Scholar 

  3. H. Cheng, J.G. Shapter, Y. Li, G. Gao, Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 451–468, 57 (2021)

    Google Scholar 

  4. Z. Liang, R. Shen, Y.H. Ng, P. Zhang, Q. Xiang, X. Li, A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J Mater. Sci. Technol. 89–121, 56 (2020)

    Google Scholar 

  5. T. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 1600289, 4 (2017)

    Google Scholar 

  6. S. Niu, J. Cai, G. Wang, Two-dimensional MoS2 for hydrogen evolution reaction catalysis: the electronic structure regulation. Nano Res. 14, 1985–2002 (2021)

    Article  CAS  Google Scholar 

  7. F. Bertoldo, R.R. Unocic, Y.-C. Lin, X. Sang, A.A. Puretzky, Y. Yu, D. Miakota, C.M. Rouleau, J. Schou, K.S. Thygesen, D.B. Geohegan, S. Canulescu, Intrinsic defects in MoS2 grown by pulsed laser deposition: from monolayers to bilayers. ACS Nano 2858–2868, 15 (2021)

    Google Scholar 

  8. Z. Xiao, L. Sheng, L. Jiang, Y. Zhao, M. Jiang, X. Zhang, M. Zhang, J. Shi, Y. Lin, Z. Fan, Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate Li-ion batteries. Chem. Eng. J. 127269, 408 (2021)

    Google Scholar 

  9. X. Zhang, Y. Li, D. Li, J. Xiao, W. Zhang, Y. Xu, Rice husk derived porous carbon decorated with hierarchical molybdenum disulfide microflowers: synergistic lithium storage performance and lithiation kinetics. Int. J. Hydrogen Energy 7438–7447, 44 (2019)

    Google Scholar 

  10. Y. Zhang, H. Tao, H. Ma, S. Du, T. Li, Y. Zhang, J. Li, X. Yang, Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage. Electrochim Acta 619–627, 283 (2018)

    Google Scholar 

  11. J. Ren, R.-P. Ren, Y.-K. Lv, A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem Eng J. 419–424, 353 (2018)

    Google Scholar 

  12. M. Gao, B. Liu, X. Zhang, Y. Zhang, X. Li, G. Han, Ultrathin MoS2 nanosheets anchored on carbon nanofibers as free-standing flexible anode with stable lithium storage performance. J. Alloys Compd. 162550, 894 (2022)

    Google Scholar 

  13. Y. Chen, B. Song, X. Tang, L. Lu, J. Xue, Ultrasmall Fe3O4nanoparticle/MoS2nanosheet Composites with Superior Performances for lithium ion Batteries (Small, 2014), pp. 1536–1543 10

  14. Y. Chen, J. Lu, S. Wen, L. Lu, J. Xue, Synthesis of SnO2/MoS2 composites with different component ratios and their applications as lithium ion battery anodes. J Mater. Chem. A 17857–17866, 2 (2014)

    Google Scholar 

  15. S.-H. Lee, V. Sridhar, J.-H. Jung, K. Karthikeyan, Y.-S. Lee, R. Mukherjee, N. Koratkar, I.-K. Oh, Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 4242–4251, 7 (2013)

    Google Scholar 

  16. S. Vadahanambi, S.-H. Lee, W.-J. Kim, I.-K. Oh, Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol. 10510–10517, 47 (2013)

    Google Scholar 

  17. J. Chao, L. Yang, H. Zhang, J. Liu, R. Hu, M. Zhu, Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J. Power Sources 227680, 450 (2020)

    Google Scholar 

  18. X. Hao, Z. Jiang, X. Shang, X. Tian, X. Chen, X. Hao, Z.-J. Jiang, Understanding the role of graphene intercalation layers on both sides of sandwich structured graphene@MoS2@porous graphene anode in promoting sodium storage performance and stability. J. Alloys Compd. 155336, 845 (2020)

    Google Scholar 

  19. Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng, X. Feng, Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 8349–8356, 6 (2012)

    Google Scholar 

  20. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun. 4252–4254, 47 (2011)

    Google Scholar 

  21. T.-F. Yi, L.-Y. Qiu, J. Mei, S.-Y. Qi, P. Cui, S. Luo, Y.-R. Zhu, Y. Xie, Y.-B. He, Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci. Bull. 546–556, 65 (2020)

    Google Scholar 

  22. X. Hao, J. Zhang, J. Wang, B. Zhao, M. Qian, R. Wang, Q. Yuan, X. Zhang, X. Huang, H. Li, C. Yu, J. Xie, F. Wu, G. Tan, Metallothermic-synchronous construction of compact dual-two-dimensional MoS2-graphene composites for high-capacity lithium storage. Nano Energy 107850, 103 (2022)

    Google Scholar 

  23. Y. Li, S. Zuo, Q.-H. Li, X. Wu, J. Zhang, H. Zhang, J. Zhang, Vertically aligned MoS2 with in-plane selectively cleaved Mo–S bond for hydrogen production. Nano Lett. 1848–1855, 21 (2021)

    Google Scholar 

  24. Z. Li, Y. Huang, Z. Wan, X. Zeng, T. Zhu, W. Jiang, Z. Wu, X. Gao, M. Ling, C. Liang, An aqueous binder for high-areal-capacity Fe3O4-based anodes in lithium-ion batteries. ACS Appl. Energy Mater. 7201–7208, 4 (2021)

    Google Scholar 

  25. Z. Tong, Z. Liao, Y. Liu, M. Ma, Y. Bi, W. Huang, Y. Ma, M. Qiao, G. Wu, Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 646–654, 179 (2021)

    Google Scholar 

  26. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 891–895, 3 (2004)

    Google Scholar 

  27. Y. Luo, M.-S. Balogun, W. Qiu, R. Zhao, P. Liu, Y. Tong, Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4–S core – shell nanorods for lithium storage. Chem Commun. 13016–13019, 51 (2015)

    Google Scholar 

  28. T.-T. Wei, N. Zhang, Y.-S. Zhao, Y.-R. Zhu, T.-F. Yi, Sodium-deficient O3–Na0.75Fe0.5-xCuxMn0.5O2 as high-performance cathode materials of sodium-ion batteries. Compos. Part. B: Eng. 109912, 238 (2022)

    Google Scholar 

  29. M.E.C. Pascuzzi, E. Selinger, A. Sacco, M. Castellino, P. Rivolo, S. Hernández, G. Lopinski, I. Tamblyn, R. Nasi, S. Esposito, M. Manzoli, B. Bonelli, M. Armandi, Beneficial effect of Fe addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction. Electrochim Acta. 294–302, 284 (2018)

    Google Scholar 

  30. Z. Liu, J. Wang, V. Kushvaha, S. Poyraz, H. Tippur, S. Park, M. Kim, Y. Liu, J. Bar, H. Chen, X. Zhang, Poptube approach for ultrafast carbon nanotube growth. Chem Commun. 9912–9914, 47 (2011)

    Google Scholar 

  31. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 209–231, 7 (2014)

    Google Scholar 

  32. D.A. Dinh, T.L. Nguyen, T.V. Cuong, K.S. Hui, T.H. Bui, S. Wu, K.N. Hui, Defect-free MoS2-flakes/amorphous-carbon hybrid as an advanced anode for lithium-ion batteries. Energy Fuels. 3459–3468, 35 (2021)

    Google Scholar 

  33. T. Zhu, J.S. Chen, X.W. Lou, Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J Phys. Chem. C. 9814–9820, 115 (2011)

    Google Scholar 

  34. S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, L. Ling, Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources 3887–3893, 196 (2011)

    Google Scholar 

  35. G. Gao, S. Lu, B. Dong, Z. Zhang, Y. Zheng, S. Ding, One-pot synthesis of carbon coated Fe3O4 nanosheets with superior lithium storage capability. J Mater. Chem. A 4716–4721, 3 (2015)

    Google Scholar 

  36. L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Delicate ternary heterostructures achieved by hierarchical co-assembly of Ag and Fe3O4 nanoparticles on MoS2 nanosheets: morphological and compositional synergy in reversible lithium storage. J Mater. Chem. A 2726–2733, 3 (2015)

    Google Scholar 

  37. C.-Y. Wu, W.-E. Chang, Y.-G. Sun, J.-M. Wu, J.-G. Duh, Three-dimensional S-MoS2@α-Fe2O3 nanoparticles composites as lithium-ion battery anodes for enhanced electrochemical performance. Mater. Chem. Phys. 311–317, 219 (2018)

    Google Scholar 

  38. Q. Gan, K. Zhao, Z. He, S. Liu, A. Li, Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage. J Power Sources 187–195, 384 (2018)

    Google Scholar 

  39. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, J.-Y. Lee, Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem. 6251–6257, 21 (2011)

    Google Scholar 

  40. K. Chang, W. Chen, L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 4720–4728, 5 (2011)

    Google Scholar 

  41. Y. Chen, W. Zong, H. Chen, Z. Li, H. Pang, A. Yuan, H. Yang, X. Shen, Cyanide-metal framework derived porous MoO3-Fe2O3 hybrid micro-octahedrons as superior anode for lithium-ion batteries. Chem. Eng. J. 130347, 426 (2021)

    Google Scholar 

  42. X. Jin, Y. Li, T. Jin, J. Jiang, Q. Zhu, J. Yao, Facile and efficient synthesis of binary FeOOH/Fe2O3 composite as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 163026, 896 (2022)

    Google Scholar 

  43. Y.S. Choi, W. Choi, W.-S. Yoon, J.M. Kim, Unveiling the genesis and effectiveness of negative fading in nanostructured iron oxide anode materials for lithium-ion batteries. ACS Nano 631–642, 16 (2022)

    Google Scholar 

  44. X. Huang, X. Cai, D. Xu, W. Chen, S. Wang, W. Zhou, Y. Meng, Y. Fang, X. Yu, Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J. Mater. Chem. A 16890–16899, 6 (2018)

    Google Scholar 

  45. J. Zhan, K. Wu, X. Yu, M. Yang, X. Cao, B. Lei, D. Pan, H. Jiang, M. Wu, α-Fe2O3 nanoparticles decorated C@MoS2 nanosheet arrays with an expanded spacing of (002) plane for ultrafast and high Li/Na-ion storage. Small 15, 1901083 (2019)

    Article  Google Scholar 

  46. W. Ju, C. Dong, B. Jin, Y. Zhu, Z. Wen, Q. Jiang, Composites of reduced graphene oxide and Fe2O3 nanoparticles anchored on MoS2 nanosheets for lithium storage. ACS Appl. Nano Mater. 9009–9015, 3 (2020)

    Google Scholar 

  47. F. Lu, C. Xu, F. Meng, T. Xia, R. Wang, J. Wang, Two-step synthesis of hierarchical dual few-layered Fe3O4/MoS2 nanosheets and their synergistic effects on lithium-storage performance. Adv. Mater. Interfaces 1700639, 4 (2017)

    Google Scholar 

  48. D. Xu, W. Chen, M. Zheng, X. Huang, Y. Fang, X. Yu, Nanoflakes assembled hydrangea-like Fe2O3@C@MoS2@C nanocomposite as high performance anode materials for lithium/sodium ion batteries. Electrochim. Acta 419–429, 265 (2018)

    Google Scholar 

  49. T.F. Yi, L. Shi, X. Han, F. Wang, Y. Zhu, Y. Xie, Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ. Mater. 586–595, 4 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors also gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 51974158), Scientific Research Projects of Key Disciplines in Guangdong Province (2019-GDXK-0023), the Natural Science Foundation of Guangdong (No. 2019A1515011293), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110232, 2021A1515010363, and 2021A1515110003), and Projects of “Leiyang Scholar” post plan of Lingnan Normal University (2021).

Author information

Authors and Affiliations

Authors

Contributions

JT (Preparation and Data curation); XZ (Conceptualization and Writing—original draft); Bei Jin (Preparation, Investigation and Visualization); JL (Formal analysis, Visualization and Writing—review and editing); XN ( Formal analysis and Software); LZ (Validation and Resources); ZW (Formal analysis and Resources); GW (Resources and Writing—review and editing); XZ (Resources, Writing—review and editing, and Supervision).

Corresponding authors

Correspondence to Genwei Wang or Xiaosong Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhou, X., Jin, B. et al. Microwave-assisted synthesis of a ternary MoS2/carbon-FeOx composites with 3D hierarchical nanostructure for lithium-ion battery application. J Mater Sci: Mater Electron 34, 121 (2023). https://doi.org/10.1007/s10854-022-09553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09553-3

Navigation