Skip to main content

Advertisement

Log in

Preparation and characterization of a novel modified system: polyaniline/1,5-naphthalene disulfonic acid as a novel photocatalyst for H2 production

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The semiconducting properties of the system Polyaniline (PANI)/1,5-naphthalene disulfonic acid (NDSA) were investigated to assess its photocatalytic performance for the hydrogen evolution under visible light irradiation. PANI/NDSA is thermally stable up to ~ 300 °C, above which a weight loss of ~ 1.2% occurs. The X-ray diffraction pattern showed broad peaks with a particle size of ~ 7 nm. A direct optical transition at 1.96 eV, was determined from the diffuse reflectance spectrum. The electrical conductivity of PANI/NDSA follow an exponential law with an activation energy of 0.24 eV. The p-type conduction was demonstrated from the (capacitance−2—potential) characteristic; a flat band potential (Efb) of 0.82 VSCE and a holes density (NA) of 8.43× 1024 m−3 were determined in neutral solution (Na2SO4 0.1 M). The electrochemical impedance spectroscopy, measured over an extended frequency domain (1 mHz—1010 Hz), indicated the contribution of both the bulk and grain boundaries with a constant phase element (CPE). As application, PANI/NDSA was successfully tested for the hydrogen production under visible light owing to the potential of its conduction band (− 0.75 VSCE), more cathodic than that of H2O/H2 (~− 0.30 VSCE). The H2 liberation rate of 3840 µmol h−1 (g catalyst)−1 and a quantum efficiency of 0.34% were obtained under full light (29 mW cm−2) using Fe(CN)64− as reducing agent. The photoactivity was completely restored during the second cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Jäger-Waldau, Energies 12, 769 (2019)

    Article  Google Scholar 

  2. N.M. Haegel, H. Atwater, T. Barnes, C. Breyer, A. Burrell, Y.-M. Chiang, S. De Wolf, B. Dimmler, D. Feldman, S. Glunz, J.C. Goldschmidt, D. Hochschild, R. Inzunza, I. Kaizuka, B. Kroposki, S. Kurtz, S. Leu, R. Margolis, K. Matsubara, A. Metz, W.K. Metzger, M. Morjaria, S. Niki, S. Nowak, I.M. Peters, S. Philipps, T. Reindl, A. Richter, D. Rose, K. Sakurai, R. Schlatmann, M. Shikano, W. Sinke, R. Sinton, B.J. Stanbery, M. Topic, W. Tumas, Y. Ueda, J. van de Lagemaat, P. Verlinden, M. Vetter, E. Warren, M. Werner, M. Yamaguchi, A.W. Bett, Science 364(6443), 836–8 (2019)

    Article  CAS  Google Scholar 

  3. Ü. Ağbulut, S. Sarıdemir, Int. J. Ambient Energy 42(13), 1569–74 (2018)

    Article  Google Scholar 

  4. S. Wu, G. Xiong, H. Yang, Y. Tian, B. Gong, H. Wan, Y. Wang, T.S. Fisher, J. Yan, K. Cen, Z. Bo, K. Ken Ostrikov, Scalable production of integrated graphene nanoarchitectures for ultrafast solar-thermal conversion and vapor generation. Matter 1(4), 1017–32 (2019)

    Article  Google Scholar 

  5. R.S. Kumar, K. Govindan, S. Ramakrishnan, A.R. Kim, J.-S. Kim, D.J. Yoo, Appl. Surf. Sci. 556, 149765 (2021)

    Article  Google Scholar 

  6. R. Kannan, A.R. Kim, S.K. Eo, S.H. Kang, D.J. Yoo, Ceram. Int. 43, 3072 (2017)

    Article  CAS  Google Scholar 

  7. F. Saib, F. Özel, A. Sarılmaz, O. Mahroua, B. Bellal, M. Trari, Mater. Sci. Semicond. Process. 91, 174 (2019)

    Article  CAS  Google Scholar 

  8. R. Bagtache, F. Saib, K. Abdmeziem, M. Trari, Int. J. Hydrog. Energy 44, 22419 (2019)

    Article  CAS  Google Scholar 

  9. D. Hamane, O. Arous, F. Kaouah, M. Trari, H. Kerdjoudj, Z. Bendjama, J. Environ. Chem. Eng. 3, 60 (2015)

    Article  CAS  Google Scholar 

  10. F. Saib, O. Arous, A. Mazari, M. Trari, Macromol. Symp. 386, 1 (2019)

    Article  Google Scholar 

  11. G. Rekhila, Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy 40, 12611 (2015)

    Article  CAS  Google Scholar 

  12. M. Benamira, H. Lahmar, L. Messaadia, G. Rekhila, F.Z. Akika, M. Himrane, M. Trari, Int. J. Hydrog. Energy 45(3), 1719–28 (2019)

    Article  Google Scholar 

  13. M. Silakhori, M. Jafarian, M. Arjomandi, G.J. Nathan, J. Energy Storage 21, 216 (2019)

    Article  Google Scholar 

  14. J. Joy, J. Mathew, S.C. George, Int. J. Hydrog. Energy 43, 4804 (2018)

    Article  CAS  Google Scholar 

  15. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109 (2019)

    Article  CAS  Google Scholar 

  16. S. Wang, G. Liu, L. Wang, Chem. Rev. 119, 5192 (2019)

    Article  CAS  Google Scholar 

  17. X. Gao, I. Di Bernardo, P. Kreider, T. Tran-Phu, X. Cai, N. Wang, Y. Zhu, M.B. Venkataraman, J. Lipton-Duffin, A. Bayon, W. Lipiński, A. Tricoli, ACS Catal. 9, 9880 (2019)

    Article  CAS  Google Scholar 

  18. N.B. Goikoetxea, M.B. Gómez-Mancebo, R. Fernández-Saavedra, F. Borlaf, F. García-Pérez, J.A. Jiménez, I. Llorente, I. Rucandio, A.J. Quejido, Int. J. Hydrogen Energy 44, 17578 (2019)

    Article  CAS  Google Scholar 

  19. A. Belhadi, M. Trari, C. Rabia, O. Cherifi, Open J. Phys. Chem. 03, 89 (2013)

    Article  Google Scholar 

  20. A.R. Marlinda, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, S. Sagadevan, Y.A. Wahab, M.R. Johan, Int. J. Hydrogen Energy 44, 17535 (2019)

    Article  CAS  Google Scholar 

  21. M. Liu, C.Y. Nam, C.T. Black, J. Kamcev, L. Zhang, J. Phys. Chem. C 117, 13396 (2013)

    Article  CAS  Google Scholar 

  22. T.R. Hellstern, A.C. Nielander, P. Chakthranont, L.A. King, J.J. Willis, S. Xu, C. Macisaac, C. Hahn, S.F. Bent, F.B. Prinz, T.F. Jaramillo, A.C.S. Appl, Nano Mater. 2, 6 (2019)

    CAS  Google Scholar 

  23. J.A. Joseph, S.B. Nair, K.A. John, S. Babu, S. Shaji, V.K. Shinoj, R.R. Philip, J. Appl. Electrochem. 50, 81 (2020)

    Article  CAS  Google Scholar 

  24. X. Yuan, M. Sun, Y. Yao, X. Lin, J. Shi, New J. Chem. 43, 2665 (2019)

    Article  CAS  Google Scholar 

  25. C.M. Magdalane, K. Kanimozhi, M.V. Arularasu, G. Ramalingam, K. Kaviyarasu, Surf. Interfaces 17, 100346 (2019)

    Article  CAS  Google Scholar 

  26. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, J. Electrochem. Soc. 164, H651 (2017)

    Article  CAS  Google Scholar 

  27. F. Yang, Q. Zhang, L. Zhang, M. Cao, Q. Liu, W.L. Dai, Appl. Catal. B 257, 117901 (2019)

    Article  CAS  Google Scholar 

  28. Y. Qiao, X. Meng, Z. Zhang, Appl. Surf. Sci. 470, 645 (2019)

    Article  CAS  Google Scholar 

  29. A. Hernández, N. Loera, G. Pérez, and F. Blockstrand, Miner. Met. Mater. Ser. 133 (2019)

  30. I.H. Tseng, Y.M. Sung, P.Y. Chang, C.Y. Chen, Polymers (Basel). 11, 146 (2019)

    Article  Google Scholar 

  31. F. Saib, B. Bellal, M. Trari, Mater. Sci. Semicond. Process. 63, 122 (2017)

    Article  CAS  Google Scholar 

  32. F. Saib, M. Mekiri, B. Bellal, M. Chibane, M. Trari, Russ. J. Phys. Chem. A 91, 1562 (2017)

    Article  CAS  Google Scholar 

  33. Y. Wang, F. Silveri, M.K. Bayazit, Q. Ruan, Y. Li, J. Xie, C.R.A. Catlow, J. Tang, Adv. Energy Mater. 8, 1801084 (2018)

    Article  Google Scholar 

  34. L. Wang, D. Yan, D.W. Shaffer, X. Ye, B.H. Layne, J.J. Concepcion, M. Liu, C.Y. Nam, Chem. Mater. 30, 324 (2018)

    Article  CAS  Google Scholar 

  35. X. Yuan, D. Dragoe, P. Beaunier, D.B. Uribe, L. Ramos, M.G. Méndez-Medrano, H. Remita, J. Mater. Chem. A 8, 268 (2020)

    Article  CAS  Google Scholar 

  36. J. Heinze, Org. Electrochem. Fifth Ed. Revis. Expand. 3, 1571 (2015)

    Google Scholar 

  37. M. Bhaumik, A. Maity, T.S. Mahule, V.V. Srinivasu, Synth. Met. 249, 63 (2019)

    Article  CAS  Google Scholar 

  38. M. Bounedjar, N. Naar, A. Mekki, J. Macromol. Sci. Part B 60, 190 (2020)

    Article  Google Scholar 

  39. M. Bounedjar, N. Naar, A. Mekki, J. Macromol. Sci. Part B 60(9), 686–707 (2021)

    Article  CAS  Google Scholar 

  40. M. Bounedjar, N. Naar, A. Mekki, J. Polym. Res. 27, 1 (2020)

    Article  Google Scholar 

  41. S. Zhang, S. Chen, Y. Zhao, J. Kang, J. Chen, B. Yan, Y. Gu, F. Yang, Y. Cao, J. Electrochem. Soc. 166, H77 (2019)

    Article  CAS  Google Scholar 

  42. M. Soleimani-Lashkenari, S. Rezaei, J. Fallah, H. Rostami, Synth. Met. 235, 71 (2018)

    Article  CAS  Google Scholar 

  43. J.X. Feng, L.X. Ding, S.H. Ye, X.J. He, H. Xu, Y.X. Tong, G.R. Li, Adv. Mater. 27, 7051 (2015)

    Article  CAS  Google Scholar 

  44. J.X. Feng, S.Y. Tong, Y.X. Tong, G.R. Li, J. Am. Chem. Soc. 140, 5118 (2018)

    Article  CAS  Google Scholar 

  45. A. Shirmardi, M.A.M. Teridi, H.R. Azimi, W.J. Basirun, F. Jamali-Sheini, R. Yousefi, Appl. Surf. Sci. 462, 730 (2018)

    Article  CAS  Google Scholar 

  46. B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu, C.Q. Sun, Appl. Catal. B 226, 234 (2018)

    Article  CAS  Google Scholar 

  47. Z. Ren, X. Liu, Z. Zhuge, Y. Gong, C.Q. Sun, Chin. J. Catal. 41, 180 (2020)

    Article  CAS  Google Scholar 

  48. Z. Zhuge, X. Liu, T. Chen, Y. Gong, C. Li, L. Niu, S. Xu, X. Xu, Z.A. Alothman, C.Q. Sun, J.G. Shapter, Y. Yamauchi, Chem. Eng. J. 421, 127838 (2020)

    Article  Google Scholar 

  49. B. Liu, X. Liu, L. Li, Z. Zhuge, Y. Li, C. Li, Y. Gong, L. Niu, S. Xu, C.Q. Sun, Appl. Surf. Sci. 484, 300 (2019)

    Article  CAS  Google Scholar 

  50. X. Liu, B. Liu, L. Li, Z. Zhuge, P. Chen, C. Li, Y. Gong, L. Niu, J. Liu, L. Lei, C.Q. Sun, Appl. Catal. B 249, 82 (2019)

    Article  CAS  Google Scholar 

  51. A. Rahy, D.J. Yang, Mater. Lett. 62, 4311 (2008)

    Article  CAS  Google Scholar 

  52. Z. Zhang, Z. Wei, L. Zhang, M. Wan, Acta Mater. 53, 1373 (2005)

    Article  CAS  Google Scholar 

  53. N. Naar, D. Djurado, L. Saad, A. Pron, J. Macromol. Sci. Part A 50, 631 (2013)

    Article  CAS  Google Scholar 

  54. F. Saib, F. Touahra, Y. Azoudj, R. Chebout, D. Lerari, K. Bachari, A. Abdi, M. Trari, J. Solid State Electrochem. 26, 607 (2022)

    Article  CAS  Google Scholar 

  55. F.Z. Hamlaoui, N. Naar, F. Saib, M. Trari, J. Photochem. Photobiol. A 407, 113062 (2021)

    Article  CAS  Google Scholar 

  56. O. Mahi, K. Khaldi, M.S. Belardja, A. Belmokhtar, A. Benyoucef, J. Inorg. Organomet. Polym. Mater. 31, 2095 (2021)

    Article  CAS  Google Scholar 

  57. J. Huang, M. Wan, J. Polym. Sci. Part A 37, 1277 (1999)

    Article  CAS  Google Scholar 

  58. X. Dong, X. Zhang, X. Wu, H. Cui, D. Chen, Sensors (Switzerland) 16, 1889 (2016)

    Article  Google Scholar 

  59. B. Marjanović, I. Juranić, S. Mentus, G. Ćirić-Marjanović, P. Holler, Chem. Pap. 64, 783 (2010)

    Article  Google Scholar 

  60. F. Ghadimi, K.D. Safa, B. Massoumi, A.A. Entezami, Iran. Polym. J. Engl. Ed. 11, 159 (2002)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr S. Kabouche for his assistance and fruitful discussion in electrochemistry. The Faculties of Chemistry financially supported this work. The authors gratefully acknowledge the financial support of the Faculty of Chemistry (Algiers)

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

FZH: validation, investigation, visualization, resources, writing—original draft, and writing—review and editing. NN: methodology, validation, writing—original draft, and writing—review and editing. FSAIB and MT: methodology, conceptualization, validation, writing—original draft, writing—review and editing, visualization, and supervision.

Corresponding author

Correspondence to F. Saib.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamlaoui, F.Z., Naar, N., Saib, F. et al. Preparation and characterization of a novel modified system: polyaniline/1,5-naphthalene disulfonic acid as a novel photocatalyst for H2 production. J Mater Sci: Mater Electron 34, 253 (2023). https://doi.org/10.1007/s10854-022-09508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09508-8

Navigation