Skip to main content
Log in

Ultrafast photoresponse in ultraviolet detectors based on zinc oxide nanorods: the effect of a graphene capping layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the influence of the graphene layer on the speed of light detection of ZnO-based photodetectors. Due to their elevated exposed area and antireflective properties, ZnO nanorods are promising materials in photon entrapment and improving the performance of fabricated photodetectors. However, their higher surface resistivity compared to the bulk material reduces the speed of light detection and increases the recombination rate. Graphene thin film was transferred on top of zinc oxide nanorods through the electrophoretic deposition method to overcome this issue. The scanning electron microscopy showed that the graphene entirely covered ZnO nanorods, and their morphology remained intact after the deposition of the capping layer. For studying the effect of graphene on the optical characteristics of ZnO nanorods, the photoluminescence (PL) spectra were investigated before and after transferring of graphene. There was a reduction in the PL intensity of the capped nanostructures due to the slight absorption of light in the graphene layer. Raman spectra of the graphene-containing sample revealed two dominant peaks related to graphene's D and G bands. The intensity of the G band was lower than the D band, showing a reduced amount of structural disorder and defects in the graphene layers. To investigate the optoelectrical characteristics, ultraviolet detectors were designed based on zinc oxide nanorods with and without the presence of graphene. The photonic properties of devices indicated a notable increase in the speed of light detection for the fabricated photodetectors containing a graphene capping layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Wang, S. Li, J. Cao, Y. Jiang, Y. Zhang, W. Tang, Z. Wu, Mater Des. (2022). https://doi.org/10.1016/j.matdes.2022.110917

    Article  Google Scholar 

  2. Y. Chen, X. Zhou, Z. Zhang, G. Miao, H. Jiang, Z. Li, H. Song, Mater Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129583

    Article  Google Scholar 

  3. M. Khaouani, A. Hamdoune, H. Bencherif, Z. Kourdi, L. Dehimi, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164797

    Article  Google Scholar 

  4. L. Li, S. Yuan, K. Amina, P. Zhai, Y. Su, R. Lou, X. Hao, H. Shan, T. Xue, H. Liu, T. Meng, T. Jiang, L. Ding, G. Wei, Sens Actuators A Phys. (2022). https://doi.org/10.1016/j.sna.2022.113878

    Article  Google Scholar 

  5. Y. Jin, S. Jiao, H. Lu, D. Wang, S. Gao, J. Wang, J Electron Mater. (2020). https://doi.org/10.1007/s11664-020-08153-3

    Article  Google Scholar 

  6. N. Naderi, M. Moghaddam, Ceram Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.173

    Article  Google Scholar 

  7. Z. Yin, Y. Shan, M. Yu, L. Yang, J. Song, P. Hu, F. Teng, Mater Sci Semicond Process. (2022). https://doi.org/10.1016/j.mssp.2022.106813

    Article  Google Scholar 

  8. T.-P. Chen, S.-J. Young, S.-J. Chang, C.-H. Hsiao, Y.-J. Hsu, Nanoscale Res Lett. (2012). https://doi.org/10.1186/1556-276X-7-214

    Article  Google Scholar 

  9. R. Shabannia, Mater Lett. (2018). https://doi.org/10.1016/j.matlet.2017.12.019

    Article  Google Scholar 

  10. Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, Physica B Condens Matter. (2009). https://doi.org/10.1016/j.physb.2009.08.011

    Article  Google Scholar 

  11. G. Luo, X. Yang, Y. Long, W. Li, Y. Yang, S. Luo, J Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165066

    Article  Google Scholar 

  12. J.P. Braga, C.A. Amorim, G.R. De Lima, G. Gozzi, L. Fugikawa-Santos, Mater Sci Semicond Process. (2022). https://doi.org/10.1016/j.mssp.2022.106984

    Article  Google Scholar 

  13. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J Mater Sci-Mater Electron. (2016). https://doi.org/10.1007/s10854-016-4827-4

    Article  Google Scholar 

  14. H. Ma, K. Liu, Z. Cheng, Z. Zheng, Y. Liu, P. Zhang, X. Chen, D. Liu, L. Liu, D. Shen, J Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159252

    Article  Google Scholar 

  15. D. Kim, J.-Y. Leem, Mater Sci Semicond Process. (2022). https://doi.org/10.1016/j.mssp.2021.106286

    Article  Google Scholar 

  16. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J Mater Sci-Mater Electron. (2017). https://doi.org/10.1007/s10854-017-6896-4

    Article  Google Scholar 

  17. N.F. Nazari, M. Rajabi, A.Z. Moshfegh, Surf Interfaces. (2022). https://doi.org/10.1016/j.surfin.2021.101682

    Article  Google Scholar 

  18. C. Ling, T. Guo, M. Shan, L. Zhao, H. Sui, S. Ma, Q. Xue, J Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.05.150

    Article  Google Scholar 

  19. Z. Li, X. Yu, Y. Zhu, S. Liu, X. Wen, H. Lu, C. Wang, X. Li, M.-Y. Li, Y. Yang, Appl Surf Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.152352

    Article  Google Scholar 

  20. P. Fallahazad, N. Naderi, M.J. Eshraghi, J Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155123

    Article  Google Scholar 

  21. M. Sharifi, N. Naderi, P. Fallahazad, M.J. Eshraghi, Sens Actuators A. (2020). https://doi.org/10.1016/j.sna.2020.112065

    Article  Google Scholar 

  22. T. Yang, B. Sun, L. Ni, X. Wei, T. Guo, Z. Shi, F. Han, L. Duan, Curr Appl Phys. (2018). https://doi.org/10.1016/j.cap.2018.04.010

    Article  Google Scholar 

  23. H.Y. Yang, D.I. Son, T.W. Kim, J.M. Lee, W.I. Park, Org Electron. (2010). https://doi.org/10.1016/j.orgel.2010.04.009

    Article  Google Scholar 

  24. S. Liu, B. Li, H. Kan, H. Liu, B. Xie, X. Zhu, Y. Hu, S. Jiang, J Mater Sci-Mater Electron. (2017). https://doi.org/10.1007/s10854-017-6681-4

    Article  Google Scholar 

  25. M. Kolahdouz, B. Xu, A.F. Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, Y. Wu, H.H. Radamson, Micromachines. (2022). https://doi.org/10.3390/mi13081257

    Article  Google Scholar 

  26. W. Liu, G. Speranza, ACS Omega (2021). https://doi.org/10.1021/acsomega.0c05578

    Article  Google Scholar 

  27. H.-D. Huang, Z. Guo, P.-Y. Yang, P. Chen, J. Wu, Chem Phys Lett. (2021). https://doi.org/10.1016/j.cplett.2021.138551

    Article  Google Scholar 

  28. M. Hajimazdarani, N. Naderi, B. Yarmand, A. Kolahi, P. Sangpour, Ceram Int. (2018). https://doi.org/10.1016/j.ceramint.2018.06.260

    Article  Google Scholar 

  29. N. Naderi, S. Rasi, M. Moradi, Optik (2018). https://doi.org/10.1016/j.ijleo.2018.07.025

    Article  Google Scholar 

  30. B. Tugba Camic, J. Vapaavuori, F. Basarir, Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.131632

    Article  Google Scholar 

  31. J. Yoo, M. Shoaib Tahir, I. Rabani, Y.-S. Seo, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153977

    Article  Google Scholar 

  32. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J Mater Sci-Mater Electron. (2017). https://doi.org/10.1007/s10854-016-5676-x

    Article  Google Scholar 

  33. L. Bo, X. Liu, D. Wang, Res Surf Interfaces. (2022). https://doi.org/10.1016/j.rsurfi.2022.100077

    Article  Google Scholar 

  34. Y. Ma, J. Han, M. Wang, X. Chen, S. Jia, J Materiomics. (2018). https://doi.org/10.1016/j.jmat.2018.02.004

    Article  Google Scholar 

  35. Z. González, A.M. Pérez-Mas, C. Blanco, M. Granda, R. Santamaría, Mater Des. (2018). https://doi.org/10.1016/j.matdes.2018.08.063

    Article  Google Scholar 

  36. J. Lv, J. Zhu, K. Huang, F. Meng, X. Song, Z. Sun, Appl Surf Sci. (2011). https://doi.org/10.1016/j.apsusc.2011.03.113

    Article  Google Scholar 

  37. N.T. Son, J.-S. Noh, S. Park, Appl Surf Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.04.107

    Article  Google Scholar 

  38. P. Gu, X. Zhu, D. Yang, J Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152346

    Article  Google Scholar 

  39. P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, J Mater Sci-Mater Electron. (2018). https://doi.org/10.1007/s10854-018-8608-0

    Article  Google Scholar 

  40. D. Hu, C. Song, X. Jin, Q. Huang, J Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156030

    Article  Google Scholar 

  41. M. Srivathsa, P. Kumar, B.V. Rajendra, Opt Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112726

    Article  Google Scholar 

  42. Z.M. Kakhaki, A. Youzbashi, N. Naderi, J Phys. Sci. 26, 41 (2015)

    CAS  Google Scholar 

  43. F.V. Kusmartsev, W.M. Wu, M.P. Pierpoint, K.C. Yung, Application of graphene within optoelectronic devices and transistors, in Applied Spectroscopy and the Science of Nanomaterials. ed. by P. Misra (Springer, Singapore, 2015), pp.191–221

    Chapter  Google Scholar 

  44. Q.K. Doan, M.H. Nguyen, C.D. Sai, V.T. Pham, H.H. Mai, N.H. Pham, T.C. Bach, V.T. Nguyen, T.T. Nguyen, K.H. Ho, T.H. Tran, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144593

    Article  Google Scholar 

  45. P.B. Garg, R.K. Soni, R. Raman, J. Mater. Sci-Mater. Electron. (2020). https://doi.org/10.1007/s10854-019-02621-1

    Article  Google Scholar 

  46. I. Boukhoubza, M. Khenfouch, M. Achehboune, L. Leontie, A.C. Galca, M. Enculescu, A. Carlescu, M. Guerboub, B.M. Mothudi, A. Jorio, I. Zorkani, Nanomaterials (2020). https://doi.org/10.3390/nano10081532

    Article  Google Scholar 

  47. N. Kumaresan, K. Ramamurthi, J Mater Sci-Mater Electron. (2020). https://doi.org/10.1007/s10854-020-02885-y

    Article  Google Scholar 

  48. M. Ruidíaz-Martínez, M.A. Álvarez, M.V. López-Ramón, G. Cruz-Quesada, J. Rivera-Utrilla, M. Sánchez-Polo, Catalysts (2020). https://doi.org/10.3390/catal10050520

    Article  Google Scholar 

  49. Z.M. Kakhaki, A.A. Youzbashi, P. Sangpour, N. Naderi, J Mater Sci-Mater Electron. (2017). https://doi.org/10.1007/s10854-017-7217-7

    Article  Google Scholar 

  50. X. Zhao, G. Wang, H. Lin, Y. Du, X. Luo, Z. Kong, J. Su, J. Li, W. Xiong, Y. Miao, H. Li, G. Guo, H.H. Radamson, Nanomaterials (2021). https://doi.org/10.3390/nano11051125

    Article  Google Scholar 

  51. S. Khalili, H.M. Chenari, F. Yıldırım, Z. Orhan, S. Aydogan, J Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161647

    Article  Google Scholar 

  52. S. Shafique, S. Yang, T. Iqbal, B. Cheng, Y. Wang, H. Sarwar, Y.T. Woldu, P. Ji, Sens Actuators A. (2021). https://doi.org/10.1016/j.sna.2021.113073

    Article  Google Scholar 

  53. L. Jing, F. Yuan, H. Hou, B. Xin, W. Cai, H. Fu, Sci China Ser B. (2005). https://doi.org/10.1007/BF02990909

    Article  Google Scholar 

  54. P. Abid, S.S. Sehrawat, P. Islam, S. Mishra, Ahmad. Sci Rep. (2018). https://doi.org/10.1038/s41598-018-21686-2

    Article  Google Scholar 

  55. N.M.S. Kaawash, N. Kejriwal, D.I. Halge, V.N. Narwade, A.S. Rana, J.W. Dadge, S.M. Jejurikar, P.S. Alegaonkar, K.A. Bogle, Physica B Condens Matter. (2022). https://doi.org/10.1016/j.physb.2022.413905

    Article  Google Scholar 

Download references

Funding

We would like to thank Universiti Malaya (UM) for their fundings through the grants RU 005–2021, RK 021–2019, the Ministry of Higher Education, Malaysia through the funding HiCoE Phase II (PRC-2014), and Materials and Energy Research Center (MERC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HA: Supervision, Funding acquisition, Resources, Writing—review & editing. NN: Methodology, Writing—original draft, Investigation, Visualization, Formal analysis, Writing—review & editing, Resources, Validation. MY: Formal analysis, Funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nima Naderi or Moh Yasin.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Naderi, N. & Yasin, M. Ultrafast photoresponse in ultraviolet detectors based on zinc oxide nanorods: the effect of a graphene capping layer. J Mater Sci: Mater Electron 34, 38 (2023). https://doi.org/10.1007/s10854-022-09503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09503-z

Navigation