Skip to main content
Log in

The effect of Ge on the microstructure, thermal behavior, and mechanical properties of lead-free Sn-5Sb-0.7Cu solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays, the development and improvement of physical and mechanical properties of lead-free solders have become a topic of interest for researchers, because the use of lead-containing solders has been banned. In this paper, Sn-5 wt% Sb-0.7 wt% Cu (SSC507) solder is microalloyed by germanium. Alloys were prepared by vacuum induction melting, and their thickness was reduced by rolling to 1 mm and then 300 μm, respectively. Then the physical properties (i.e., microstructure, wetting and thermal behavior) and the mechanical properties (i.e., microhardness, tensile and fractography) of the alloys were investigated. The results indicated that the addition of germanium to the base solder composition resulted in fine-graining and uniform distribution of intermetallic phases in the structure. Germanium additive significantly improved wettability properties by reducing the surface tension of the alloys. The addition of germanium has increased the microhardness of the alloys and, by modifying the microstructure, has improved the yield strength and the ultimate tensile strength of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H.B. Lee, Y.W. Kim, S.H. Kim, S.H. Park, J.P. Choi, C. Aranas, A modular solder system with hierarchical morphology and backward compatibility. Small 14(33), 1–13 (2018). https://doi.org/10.1002/smll.201801349

    Article  CAS  Google Scholar 

  2. P. Svec, D. Janiˇ, Interface between Sn–Sb–Cu solder and copper substrate. Mater. Sci. Eng. 528, 5955–5960 (2011). https://doi.org/10.1016/j.msea.2011.04.008

    Article  CAS  Google Scholar 

  3. A.R. Geranmayeh, Power law indentation creep of Sn-5 % Sb. J. Mater. Sci. 40, 3361–3366 (2005)

    Article  CAS  Google Scholar 

  4. S. Chen, A. Zi, W. Gierlotka, C. Yang, C. wang, S. Lin, C. Hsu, Phase equilibria of Sn–Sb–Cu system. Mater. Chem. Phys. 132(2–3), 703–715 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.088

    Article  CAS  Google Scholar 

  5. A.A. El-Daly, Y. Swilem, A.E. Hammad, Creep properties of Sn–Sb based lead-free solder alloys. J. Alloys Compd. 471, 98–104 (2009). https://doi.org/10.1016/j.jallcom.2008.03.097

    Article  CAS  Google Scholar 

  6. K. Suganuma, S. Kim, K. Kim, High-temperature lead-free solders: properties and possibilities. JOM 61, 64 (2009)

    Article  CAS  Google Scholar 

  7. M. Dias, T.A. Costa, B.L. Silva, J.E. Spinelli, N. Cheung, Microelectronics reliability a comparative analysis of microstructural features, tensile properties and wettability of hypoperitectic and peritectic Sn-Sb solder alloys. Microelectron. Reliab. 81, 150–158 (2018). https://doi.org/10.1016/j.microrel.2017.12.029

    Article  CAS  Google Scholar 

  8. D. Zhou, A.S.M.A. Haseeb, A. Andriyana, Mechanical performance of advanced multicomponent lead-free solder alloy under thermal aging. Mater. Today Commun. 33, 104430 (2022). https://doi.org/10.1016/j.mtcomm.2022.104430

    Article  CAS  Google Scholar 

  9. C. Zhang, S. Liu, G. Qian, J. Zhou, F. Xue, Effect of Sb content on properties of Sn—Bi solders effect of Sb content on properties of Sn—Bi solders. Trans. Nonferrous Metals Soc. China (2014). https://doi.org/10.1016/S1003-6326(14)63046-6

    Article  Google Scholar 

  10. P. Sungkhaphaitoon, T. Plookphol, The effects of antimony addition on the microstructural, mechanical, and thermal properties of Sn-3.0Ag-0.5Cu solder alloy. Metall. Mater. Trans. A 49(2), 652–660 (2017). https://doi.org/10.1007/s11661-017-4439-5

    Article  CAS  Google Scholar 

  11. E.A. Eid, E. El-Khawas, A.S. Abd-Elrahman, Impact of Sb additives on solidification performance, microstructure enhancement and tensile characteristics of Sn-6.5Zn-0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. 30(7), 6507–6518 (2019). https://doi.org/10.1007/s10854-019-00956-3

    Article  CAS  Google Scholar 

  12. Y. Yuan, X. Chen, Z. Zhou, Y. Li, B. Xu, D. Lio, B. Yang, Theoretical study on Sn–Sb-based lead-free solder by ab initio molecular dynamics simulation. J. Mater. Res. (2019). https://doi.org/10.1557/jmr.2019.137

    Article  Google Scholar 

  13. S.H. Kim, S. Yeon, J. Kim, J. Lee, S. Park, J. Choi, C. Aranas, Y. Son, Fine microstructured In-Sn-Bi solder for adhesion on a flexible PET substrate: its effect on superplasticity and toughness. ACS Appl. Mater. Interfaces 11(18), 17090–17099 (2019). https://doi.org/10.1021/acsami.9b04159

    Article  CAS  Google Scholar 

  14. R. Xu, Y. Liu, F. Sun, Effect of isothermal aging on the microstructure, shear behavior and hardness of the Sn58Bi/Sn3.0Ag0.5Cu/Cu solder joints. Results Phys. 15, 102701 (2019). https://doi.org/10.1016/j.rinp.2019.102701

    Article  Google Scholar 

  15. S. Tikale, K.N. Prabhu, Performance and reliability of Al2O3 nanoparticles doped multicomponent Sn-3.0Ag-0.5Cu-Ni-Ge solder alloy. Microelectron. Reliab. 113(September), 113933 (2020). https://doi.org/10.1016/j.microrel.2020.113933

    Article  CAS  Google Scholar 

  16. L. Yang, S. Ma, G. Mu, Improvements of microstructure and hardness of lead-free solders doped with Mo nanoparticles. Mater. Lett. 304, 130654 (2021). https://doi.org/10.1016/j.matlet.2021.130654

    Article  CAS  Google Scholar 

  17. M. Sarkar, F. Gulshan, A.R.M.H. Rashid, M. Hasanuzzaman, A review of TiO2-nanoparticle reinforced lead-free solder composites used in electronic components soldering, in Reference module in materials science and materials engineering. (Elsevier, Amsterdam, 2022)

    Google Scholar 

  18. E.A. Eid, A.M. Deghady, A.N. Fouda, Materials science & engineering A enhanced microstructural, thermal and tensile characteristics of heat treated Sn-5.0Sb-0.3Cu (SSC-503) Pb-free solder alloy under high pressure. Mater. Sci. Eng. A 743(August 2018), 726–732 (2019). https://doi.org/10.1016/j.msea.2018.11.137

    Article  CAS  Google Scholar 

  19. X. Zhang, Effects of germanium on the microstructural, mechanical and thermal properties of Sn-0.7Cu solder alloy. Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aae95d

    Article  Google Scholar 

  20. M. Hasnine, N. Vahora, Microstructural and mechanical behavior of SnCu–Ge solder alloy subjected to high temperature storage. J. Mater. Sci. Mater. Electron. 29(11), 8904–8913 (2018). https://doi.org/10.1007/s10854-018-8908-4

    Article  CAS  Google Scholar 

  21. P. Sebo, P. Svec, D. Janickovic, E. Illekova, Influence of Sb and Cu in Sn-Sb-Cu alloys on wetting of Cu and Cu-solder-Cu joint strength. Kovov. Mater. 48(1), 353 (2010)

    CAS  Google Scholar 

  22. K. Kanlayasiri, R. Kongchayasukawat, Property alterations of Sn-0.6Cu-0.05Ni-Ge lead-free solder by Ag, Bi, In and Sb addition. Trans. Nonferrous Met. Soc. China 28(6), 1166–1175 (2018). https://doi.org/10.1016/S1003-6326(18)64754-5

    Article  CAS  Google Scholar 

  23. S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen, H.-J. Wu, Phase equilibria of the Sn-Sb binary system. J. Electron. Mater. 37(7), 992–1002 (2008). https://doi.org/10.1007/s11664-008-0464-x

    Article  CAS  Google Scholar 

  24. S. Chen, A. Zi, P. Chen, H. Wu, Y. Chen, C. Wang, Interfacial reactions in the Sn–Sb/Ag and Sn–Sb/Cu couples. Mater. Chem. Phys. 111(1), 17–19 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.018

    Article  CAS  Google Scholar 

  25. Y.-T. Chen, C.-C. Chen, Interfacial reactions in Sn–Sb/Ni couples. J. Taiwan Inst. Chem. Eng. 43(2), 295–300 (2012). https://doi.org/10.1016/j.jtice.2011.08.003

    Article  CAS  Google Scholar 

  26. T. Kobayashi, K. Kobayashi, K. Mitsui, I. Shohji, Comparison of Sn-5Sb and Sn-10Sb alloys in tensile and fatigue properties using miniature size specimens. Adv. Mater. Sci. Eng. 2018, 1 (2018)

    Google Scholar 

  27. K. Kobayashi, I. Shohji, S. Koyama, H. Hokazono, Fracture behaviors of miniature size specimens of Sn-5Sb lead-free solder under tensile and fatigue conditions. Procedia Eng. 184, 238–245 (2017). https://doi.org/10.1016/j.proeng.2017.04.091

    Article  CAS  Google Scholar 

  28. K. Kobayashi, I. Shohji, H. Hokazono, Tensile and fatigue properties of miniature size specimens of Sn-5Sb lead-free solder. Thermec 879, 2377–2382 (2016). https://doi.org/10.4028/www.scientific.net/MSF.879.2377

    Article  Google Scholar 

  29. M. Hasnine, B. Tolla, M. Karasawa, Effect of Ge addition on wettability, copper dissolution, microstructural and mechanical behavior of SnCu–Ge solder alloy. J. Mater. Sci. Mater. Electron. 28(21), 16106–16119 (2017). https://doi.org/10.1007/s10854-017-7511-4

    Article  CAS  Google Scholar 

  30. K. Habu, N. Takeda, H. Watanabe, H. Ooki, J.Abe, T.Saito, Y. Tanigochi, K. Takayama, “Development of Lead-free solder Alloys of the Ge doped Sn-Ag-Bi system,” pp. 606–609, 1999.

  31. X. Zhang, X. Hu, X. Jiang, Y. Li, Effects of germanium on the microstructural, mechanical and thermal properties of Sn-0.7Cu solder alloy. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aae95d

    Article  Google Scholar 

  32. S. Liu, L. Ma, C. Zhen, Y. Wang, D. Li, F. Guo, Microstructural evolution of intermetallic compounds between crystalline/amorphous Cobalt-Phosphorous coatings and lead-free solders. J. Mater. Res. Technol. 19, 2916–2929 (2022). https://doi.org/10.1016/j.jmrt.2022.06.035

    Article  CAS  Google Scholar 

  33. S.H.A. Jaffery, M. Sabri, S. Rozali, S. Hasan, M. Mahdavifard, D.A. Al-Zubiady, B.R. Ravuri, Oxidation and wetting characteristics of lead-free Sn-0.7Cu solder alloys with the addition of Fe and Bi. Microelectron. Reliab. 139, 114802 (2022). https://doi.org/10.1016/j.microrel.2022.114802

    Article  CAS  Google Scholar 

  34. S. Tikale, K.N. Prabhu, Performance and reliability of Al2O3 nanoparticles doped multicomponent Sn-3.0Ag-0.5Cu-Ni-Ge solder alloy. Microelectron. Reliab. 113, 113933 (2020). https://doi.org/10.1016/j.microrel.2020.113933

    Article  CAS  Google Scholar 

  35. M. Hasnine, B. Tolla, M. Karasawa, Effect of Ge addition on wettability, copper dissolution, microstructural and mechanical behavior of SnCu–Ge solder alloy. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7511-4

    Article  Google Scholar 

  36. G.E. Dieter, D.J. Bacon, D. Bacon, Mechanical metallurgy (McGraw-Hill, New York, 1988)

    Google Scholar 

  37. A. El-Daly, A.Z. Mohamad, A. Fawzy, A. El-Taher, Creep behavior of near-peritectic Sn–5Sb solders containing small amount of Ag and Cu. Mater. Sci. Eng. A 528, 1055–1062 (2011). https://doi.org/10.1016/j.msea.2010.11.001

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HP and HN-M. The first draft of the manuscript was written by HP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Homam Naffakh-Moosavy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooshgan, H., Naffakh-Moosavy, H. The effect of Ge on the microstructure, thermal behavior, and mechanical properties of lead-free Sn-5Sb-0.7Cu solder alloy. J Mater Sci: Mater Electron 34, 37 (2023). https://doi.org/10.1007/s10854-022-09496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09496-9

Navigation