Skip to main content
Log in

Infrared light sensing performance of CdO-doped TiO2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdO-based materials are often used in infrared (IR) sensing devices. Previously, IR sensing properties of different CdO-based materials were reported. In this study, we produced CdO-doped TiO2 films and assessed their IR sensing capabilities. TiO2 solutions and CdO-doped TiO2 solutions were manufactured using sol–gel synthesis. Doping the TiO2 solutions with CdO allows us to tune the optoelectronic and photodiode characteristics of thin films in composite form. Pure TiO2 and CdO-doped TiO2 nanocomposite thin films were fabricated by spin coating p-Si wafers with gel solutions; pure TiO2 gel solutions; and 1%, 2%, and 10% CdO-doped TiO2 gel solutions. In the evaluation of the infrared (IR) light sensing performance of the thin films, both IV and It IR performances of Al/n-Si/Ti1−xO2CdxO/Al thin films were addressed. Using IV and It data obtained from under dark and IR illuminations, various IR sensitivity-related characteristics such as barrier height, photoresponsivity, photosensitivity, LDR (Light Dependent Resistor) values, and so on were analysed. These results were then compared with previous studies assessing the IR and light sensitivity characteristics of different types of thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. M. Soylu, M. Cavas, A.A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy, F. Yakuphanoglu, Sol. Energy Mater. Sol. Cells 124, 180 (2014)

    Article  CAS  Google Scholar 

  2. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater. 16, 545 (2019)

    Article  Google Scholar 

  3. M. İlhan, M.M. Koç, B. Coşkun, M. Erkovan, F. Yakuphanoğlu, J. Mater. Sci. Mater. Electron. 32, 2346 (2021)

    Article  Google Scholar 

  4. I. S. Yahia, G. F. Salem, M. S. Abd El-sadek, and F. Yakuphanoglu, Superlattices Microstruct. 64, 178 (2013).

  5. H.B. Kim, H.S. Lee, Thin Solid Films 550, 504 (2014)

    Article  CAS  Google Scholar 

  6. S. Özden, M.M. Koc, Appl. Nanosci. 8, 891 (2018)

    Article  Google Scholar 

  7. K. Mensah-Darkwa, R. Ocaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, M. Soylu, R.K. Gupta, F. Yakuphanoglu, Appl. Phys. A Mater. Sci. Process. (2017). https://doi.org/10.1007/s00339-017-1221-x

    Article  Google Scholar 

  8. C. Shemelya, D. Demeo, N.P. Latham, X. Wu, C. Bingham, W. Padilla, T.E. Vandervelde, Appl. Phys. Lett. 104, 201113 (2014)

    Article  Google Scholar 

  9. A. Kösemen, Z. Alpaslan Kösemen, B. Canimkubey, M. Erkovan, F. Başarir, S. E. San, O. Örnek, A. V. Tunç, Sol. Energy 132, 511 (2016).

  10. M. İlhan, M.M. Koç, B. Coşkun, A. Dere, F. Yakuphanoğlu, Optik (Stuttg). 212, 164724 (2020)

    Article  Google Scholar 

  11. N. Kurnaz Yetim, N. Aslan, A. Sarıoğlu, N. Sarı, M. M. Koç, N. K. Yetim, N. Aslan, A. Sarıoğlu, N. Sarı, M. M. Koç, J. Mater. Sci. Mater. Electron. 31, 12238 (2020)

  12. E. Hasanoğlu Özkan, N. Aslan, M. M. Koç, N. Kurnaz Yetim, N. Sarı, J. Mater. Sci. Mater. Electron. 33, 1039 (2022)

  13. F. Yakuphanoglu, Compos. Part B Eng. 92, 151 (2016)

    Article  CAS  Google Scholar 

  14. N. Aslan, M.M. Koç, A. Dere, B. Arif, M. Erkovan, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Mol. Struct. 1155, 813 (2018)

    Article  CAS  Google Scholar 

  15. A.A. Hendi, F. Yakuphanoglu, J. Alloys Compd. 665, 418 (2016)

    Article  CAS  Google Scholar 

  16. K. Chen, W. Fan, C. Huang, X. Qiu, J. Phys. Chem. Solids 110, 9 (2017)

    Article  CAS  Google Scholar 

  17. S. Uyar, B. Coşkun, M. Ilhan, M.M. Koc, J. Mater. Electron. Devices 5, 21 (2021)

    Google Scholar 

  18. A. Abdolahzadeh Ziabari, F. E. Ghodsi, G. Kiriakidis, Surf. Coatings Technol. 213, 15 (2012)

  19. M.M. Koc, J. Mol. Struct. 1208, 127872 (2020)

    Article  CAS  Google Scholar 

  20. F.A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, F. Şen, J. Mol. Liq. 299, 112177 (2020)

    Article  CAS  Google Scholar 

  21. T.M.H. Nguyen, C.W. Bark, ACS Omega 5, 2280 (2020)

    Article  CAS  Google Scholar 

  22. M.A. Awad, A.H. Aly, Ceram. Int. 45, 19036 (2019)

    Article  CAS  Google Scholar 

  23. X.H. Xia, L. Lu, A.S. Walton, M. Ward, X.P. Han, R. Brydson, J.K. Luo, G. Shao, Acta Mater. 60, 1974 (2012)

    Article  CAS  Google Scholar 

  24. T.A. Heimer, E.J. Heilweil, J. Phys. Chem. B 101, 10990 (1997)

    Article  CAS  Google Scholar 

  25. K. Sahbeni, M. Jlassi, S. Khamlich, M. Kandyla, M. Kompitsas, W. Dimassi, J. Mater. Sci. Mater. Electron. 31, 3387 (2020)

    Article  CAS  Google Scholar 

  26. G.K. Upadhyay, J.K. Rajput, T.K. Pathak, H.C. Swart, L.P. Purohit, Mater. Chem. Phys. 253, 123191 (2020)

    Article  CAS  Google Scholar 

  27. G.K. Upadhyay, V. Kumar, L.P. Purohit, J. Alloys Compd. 856, 157453 (2021)

    Article  CAS  Google Scholar 

  28. A. Rogalski, Infrared Phys. Technol. 43, 187 (2002)

    Article  Google Scholar 

  29. W. Lei, J. Antoszewski, L. Faraone, Appl. Phys. Rev. 2, 041303 (2015)

    Article  Google Scholar 

  30. L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, X.N. Hu, Y.J. Li, Q.Y. Zhang, J. Cryst. Growth 301–302, 268 (2007)

    Article  Google Scholar 

  31. A. Turut, A. Karabulut, K. Ejderha, N. Biyikli, Mater. Sci. Semicond. Process. 39, 400 (2015)

    Article  CAS  Google Scholar 

  32. N. Aslan, N. Başman, O. Uzun, M. Erkovan, F. Yakuphanoğlu, Mater. Sci. 37, 166 (2019)

    CAS  Google Scholar 

  33. N. Basman, N. Aslan, O. Uzun, G. Cankaya, U. Kolemen, Microelectron. Eng. 140, 18 (2015)

    Article  CAS  Google Scholar 

  34. M. Çavaş, F. Yakuphanoğlu, Ş Karataş, Indian J. Phys. 91, 413 (2017)

    Article  Google Scholar 

  35. K. Ejderha, A. Karabulut, N. Turkan, A. Turut, SILICON 9, 395 (2017)

    Article  CAS  Google Scholar 

  36. Ş Karataş, F. Yakuphanoǧlu, Mater. Chem. Phys. 138, 72 (2013)

    Article  Google Scholar 

  37. A. Karabulut, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Electron. Mater. 47, 7159 (2018)

    Article  CAS  Google Scholar 

  38. M. El-Kemary, M. Gaber, Y.S. El-Sayed, Y. Gheat, J. Lumin. 159, 26 (2015)

    Article  CAS  Google Scholar 

  39. L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Nat. Commun. 5, 1 (2014)

    Article  CAS  Google Scholar 

  40. W. Chandra, L.K. Ang, K.L. Pey, C.M. Ng, Appl. Phys. Lett. 90, 153505 (2007)

    Article  Google Scholar 

  41. M.B. Sarkar, A. Mondal, B. Choudhuri, B.K. Mahajan, S. Chakrabartty, C. Ngangbam, J. Alloys Compd. 615, 440 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

Authors, Zohre Gorunmez Gungor and Mumin Mehmet Koc, have received research support from the Scientific Research Coordination Office of Kirklareli University for project KLÜBAP 209.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zohre Gorunmez Gungor.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

The authors have no relevant financial or non-financial interests to disclose. This research does not involve any human participants or animals. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, M., Gorunmez Gungor, Z., Koc, M.M. et al. Infrared light sensing performance of CdO-doped TiO2 thin films. J Mater Sci: Mater Electron 34, 67 (2023). https://doi.org/10.1007/s10854-022-09411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09411-2

Navigation