Skip to main content
Log in

The Characteristic Parameters of Ni/n-6H-SiC Devices Over a Wide Measurement Temperature Range

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Ni/n-type 6H-SiC/Ni Schottky barrier diodes (SBDs) have been prepared by the DC magnetron sputtering deposition technique. Their current-voltage characteristics (I-V) have been measured in the measurement temperature range of 40-400 K with steps of 20 K under dark conditions. The barrier height (BH) values from the temperature-dependent forward and reverse bias I-V characteristics by different methods coincide with each other which indicates the elimination of the polarity between the Si and C ions. The ideality factor value remains almost unchanged in the 160-400 K range, and below 160 K, it has the values of 1.57 at 140 K, and 3.82 at 60 K. The BH has the values of 0.79 eV at 400 K, and 0.71 eV at 300 K. The decrease in the BH is due to the fact that the current will preferentially flow through the lowest BH with decreasing temperature due to barrier inhomogeneity. The value of 0.71 eV at 300 K is in close agreement with the values of 0.65 and 0.83 eV reported from the forward bias I-V characteristics for the Ni /n-type 6H-SiC in the literature. Thus, it has been concluded that the reduced barrier devices are promising for applications in devices operating at cryogenic temperatures as infrared detectors, sensors in thermal imaging and small signal zero-bias rectifiers and microwave mixers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Im HJ, Ding Y, Pelz JP, Choyke WJ (2001) Phys Rev B 64:075310

    Article  Google Scholar 

  2. Aboelfotoh MO, Frojdh C, Petersson CS (2003) Phys Rev B 67:075312

    Article  Google Scholar 

  3. Waldrop JR, Grant RW (1993) Appl Phys Lett 62:2685–2687

    Article  CAS  Google Scholar 

  4. Sefaoglu A, Duman S, Dogan S, Gurbulak B, Tuzemen S, Turut A (2008) Microelectron Eng 85:631–635

    Article  CAS  Google Scholar 

  5. Roccaforte F, La Via F, Raineri V, Mangano F, Calcagno L (2003) Appl Phys Lett 83:4181–4183

    Article  CAS  Google Scholar 

  6. Gammon PM, Péerez-Tomás A, Shah VA, Vavasour O, Donchev E, Pang JS, Myronov M, Fisher CA, Jennings MR, Leadley DR, Mawby PA (2013) J Appl Phys 114:223704

    Article  Google Scholar 

  7. Çınar K, Coskun C, Gur E, Aydogan S (2009) Nuclear Instrum Methods Phys Research B 267:87–90

    Article  Google Scholar 

  8. Raynaud C, Isoird K, Lazar M, Johnson CM, Wright N (2002) J Appl Phys 91:9842

    Article  Google Scholar 

  9. Ma X, Sadagopan P, Sudarshan TS (2006) Phys Stat Sol (a) 203:643–650

    Article  CAS  Google Scholar 

  10. Ewing DJ, Porter LM, Wahab Q, Ma X, Sudharshan TS, Tumakha S, Gao M, Brillson LJ (2007) J Appl Phys 101:114514

    Article  Google Scholar 

  11. Teraji T, Hara S (2004) Phys Rev B 70(19):035312

    Article  Google Scholar 

  12. Lee S-K, Zetterling C-M, Östling M (2001) J Electron Mater 30:242–246

    Article  CAS  Google Scholar 

  13. Zhang Q, Sudarshan TS (2001) J Electron Mater 30:1466–1470

    Article  CAS  Google Scholar 

  14. Bluet JM, Ziane D, Guillot G, Tournier D, Brosselard P, Montserrat J, Godignon P (2006) Superlatt Microstruct 40:399– 404

    Article  CAS  Google Scholar 

  15. Duman S, Dogan S, Gurbulak B, Turut A (2008) Appl Phys A 91:337–340

    Article  CAS  Google Scholar 

  16. Omotoso E, Meyer WE, Auret FD, Paradzah AT, Diale M, Coelho SMM, Janse van Rensburg PJ (2015) Mater Sci Semiconduc Process 39:112–118

    Article  CAS  Google Scholar 

  17. Tung RT (2000) Phys Rev Lett 84:6078

    Article  CAS  Google Scholar 

  18. Hoekstra J, Kohyama M (1998) Phys Rev B 57:2334

    Article  CAS  Google Scholar 

  19. Waldrop JR (1994) J Appl Phys 75:4548–4550

    Article  CAS  Google Scholar 

  20. Hamida AF, Ouennoughi Z, Sellai A, Weiss R, Ryssel H (2008) Semicond Sci Technol 23(6):045005

    Article  Google Scholar 

  21. Shigiltchoff O, Bai S, Devaty RP, Choyke WJ, Kimoto T, Hobgood D, Neudeck PG, Porter LM (2003) Mater Sci Forum 433–436:705–708

    Article  Google Scholar 

  22. Itoh A, Matsunami H (1997) Phys Status Solidi a 162:389–408

    Article  CAS  Google Scholar 

  23. Nikitina I, Vassilevski K, Horsfall A, Wright N, O’Neill AG, Ray SK, Zekente K, Johnson CM (2009) Semicond Sci Technol 24:055006

    Article  Google Scholar 

  24. Eglash SJ, Newman N, Pan S, Mo D, Shenai K, Spicer WE, Ponce FA, Collins DM (1987) J Appl Phys 61:5159–5169

    Article  CAS  Google Scholar 

  25. Turut A, Karabulut A, Ejderha K, Bıyıklı N (2015) Mater Sci Semiconduc Process 39:400–407

    Article  CAS  Google Scholar 

  26. Gammon PM, Pérez-Tomás A, Shah VA, Roberts GJ, Jennings MR, Covington JA, Mawby PA (2009) J Appl Phys 106:093708

    Article  Google Scholar 

  27. Tugluoglu N, Çalışkan F, Yüksel ÖF (2015) Synthetic Metals 199:270–275

    Article  CAS  Google Scholar 

  28. Chand S, Kaushala P, Osvald J (2013) Mater Sci Semicond Process 16:454–460

    Article  CAS  Google Scholar 

  29. Yildirim N, Korkut H, Turut A (2009) Eur Phys J Appl Phys 45:10302

    Article  Google Scholar 

  30. Yakuphanoglu F, Basaran E, Senkal BF, Sezer E (2006) J Phys Chem B 110:16908–16913

    Article  CAS  Google Scholar 

  31. Akkaya A, Esmer L, Karaaslan T, Çetin H, Ayyıldız E (2014) Mater Sci Semicond Process 28:127–134

    Article  CAS  Google Scholar 

  32. Biber M, Coskun C, Turut A (2005) Eur Phys J Appl Phys 31:79–86

    Article  CAS  Google Scholar 

  33. Jyothi I, Janardhanam V, Hong H, Choi C-J (2015) Mater Sci Semicond Process 39:390–399

    Article  CAS  Google Scholar 

  34. Duman S (2008) Semicond Sci Technol 23:075042

    Article  Google Scholar 

  35. Biyikli N, Karabulut A, Efegolu H, Guzeldir B, Turut A (2014) Phys Scr 89:095804

    Article  Google Scholar 

  36. Rhoderick EH, Williams RH (1998) Metal-semiconductor contacts, 2nd edn. Clarendon, Oxford

    Google Scholar 

  37. Ejderha K, Zengin A, Orak I, Tasyurek B, Kilinc T, Turut A (2011) Mater Sci Semiconduc Process 14:5–12

    Article  CAS  Google Scholar 

  38. Osvald J, Kuzmik J, Konstantinidis G, Lobotka P, Georgakilas A (2005) Microelectron Eng 81:181–187

    Article  CAS  Google Scholar 

  39. Mohammad SN (2005) J Appl Phys 97:063703

    Article  Google Scholar 

  40. Tung RT (2001) Mater Sci Eng R:351–138

  41. Ru GP, Van Meirhaeghe RL, Forment S, Jiang YL, Qu XP, Zhu S, Li BZ (2005) Solid State Electron 49:606–611

    Article  CAS  Google Scholar 

  42. Song YP, Van Meirhaeghe RL, Laflére WH, Cardon F (1986) Solid-St Electron 29:633–638

    Article  CAS  Google Scholar 

  43. Werner JH, Gűttler HH (1991) J Appl Phys 69:1522–1533

    Article  CAS  Google Scholar 

  44. Dobrocka E, Osvald J (1994) Appl Phys Lett 65:575–577

    Article  CAS  Google Scholar 

  45. Chand S, Kumar J (1996) Semicond Sci Technol 11:1203–1208

    Article  CAS  Google Scholar 

  46. Zhu S, Van Meirhaeghe RL, Detavernier C, Cardon F, Ru GP, Qu XP, Li BZ (2000) Solid-State Elecron 44:663–671

    Article  CAS  Google Scholar 

  47. Chawanda A, Roro KT, Auret FD, Mtangi W, Nyamhere C, Nel J, Leach L (2010) Mater Sci Semicond Process 13:371–375

    Article  CAS  Google Scholar 

  48. Huang W-C, Lin T-C, Horng C-T, Li Y-H (2013) Mater Sci Semicond Process 16:418–423

    Article  CAS  Google Scholar 

  49. Yılmaz S, Bacaksız E, Polat I, Atasoy Y (2012) Current Appl Phys 12:1326–1333

    Article  Google Scholar 

  50. Hamdaoui N, Ajjel R, Salem B, Gendry M (2014) Mater Sci Semicond Process 26:431–437

    Article  CAS  Google Scholar 

  51. Karatas S, Altındal S, Turut A, Cakar M (2007) Physica B 392:43–50

    Article  CAS  Google Scholar 

  52. Begum A, Rahman A (2014) Mater Sci Semicond Process 25:231–237

    Article  CAS  Google Scholar 

  53. Ejderha K, Yıldırım N, Turut A (2014) Eur Phys J Appl Phys 68:20101

    Article  Google Scholar 

  54. Vanalme GM, Goubert L, Van Meirhaeghe RL, Cardon F, van Daele P (1999) Semicond Sci Technol 14:871

    Article  CAS  Google Scholar 

  55. Ouennoughi Z, Toumi S, Weiss R (2015) Physica B 456:176–181

    Article  CAS  Google Scholar 

  56. Gülnahar M (2014) Superlattice Microst 76:394–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmecit Turut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejderha, K., Karabulut, A., Turkan, N. et al. The Characteristic Parameters of Ni/n-6H-SiC Devices Over a Wide Measurement Temperature Range. Silicon 9, 395–401 (2017). https://doi.org/10.1007/s12633-016-9426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9426-8

Keywords

Navigation