Skip to main content
Log in

One-dimensional hierarchical Cu2O@SnS2 heterojunction with enhanced visible-light-driven photocatalytic activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2O@SnS2 heterojunction photocatalysts with one-dimensional hierarchical nanostructure were prepared by the solvothermal method. The Cu2O@SnS2 hierarchical nanostructure is composed of Cu2O nanowire core as well as in situ grown ultra-thin SnS2 nanosheets on Cu2O nanowires. The hierarchical Cu2O@SnS2 composite shows higher catalytic activity, and the degradation ratio of MB reaches nearly 100% at 80 min. The first-order reaction kinetic constant of Cu2O@SnS2 is 0.045 min− 1, which is much higher than that of Cu2O (0.003 min− 1) and SnS2 (0.014 min− 1). The improvement in photocatalytic performance is mainly due to the formation of typical heterojunction between Cu2O and SnS2. Photo-induced electrons in the CB of Cu2O react with oxygen to form superoxide radicals (·O2−) with strong oxidation ability. At the same time, the photo-induced holes in the VB of SnS2 also have strong oxidation ability, and the two can synergistically induce the degradation of pollutants. In addition, SnS2 nanosheets not only provide a large number of reaction sites for photocatalytic degradation, but also facilitate the migration of photo-induced carrier to the surface. The unique hierarchical Cu2O@SnS2 microstructure can also promote multiple light scattering within the material to enhance light absorption. Thus, the one-dimensional hierarchical Cu2O@SnS2 is a promising new visible light catalyst, which has potential application prospect in environmental protection and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available from the first or corresponding author upon reasonable request.

References

  1. M. Poliakoff, P. Licence, Nature 450, 810–812 (2007)

    Article  CAS  Google Scholar 

  2. M. Poliakoff, J.M. Fitzpatrick, T.R. Farren, Science 297, 807–810 (2002)

    Article  CAS  Google Scholar 

  3. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301–312 (2010)

    Article  CAS  Google Scholar 

  4. A. Bashir, L.A. Malik, S. Ahad, Environ. Chem. Lett. 17, 729–754 (2019)

    Article  CAS  Google Scholar 

  5. K. Hagos, J.P. Zong, D.X. Li, C. Liu, X.H. Lu, Renew. Sust Energ. Rev. 76, 1485–1496 (2017)

    Article  CAS  Google Scholar 

  6. M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, J. Environ. Manag. 92, 2355–2388 (2011)

    Article  CAS  Google Scholar 

  7. D. Lv, R.X. Wang, G.S. Tang, ACS Appl. Mater. Inter 11, 12880–12889 (2019)

    Article  CAS  Google Scholar 

  8. T. Kegl, A. Košak, A. Lobnik, J. Hazard. Mater. 386, 121632 (2020)

    Article  CAS  Google Scholar 

  9. Q.J. Wang, Y. Zhang, X.X. Wangjin, Y.L. Wang, G.H. Meng, Y.H. Chen, J. Environ. Sci. 87, 272–280 (2020)

    Article  CAS  Google Scholar 

  10. M. Sorbiun, E.S. Mehr, A. Ramazani, S.T. Fardood, J. Mater. Sci. 29, 2806–2814 (2018)

    CAS  Google Scholar 

  11. R.A. Palominos, M.A. Mondaca, A. Giraldo, Catal. Today 144, 100–105 (2009)

    Article  CAS  Google Scholar 

  12. G.H. Safari, M. Hoseini, M. Seyedsalehi, Int. J. Environ. Sci. Technol. 12, 603–616 (2015)

    Article  CAS  Google Scholar 

  13. C. Qian, J.J. Yin, J.X. Zhao, Colloid Surf. A 610, 125752 (2021)

    Article  CAS  Google Scholar 

  14. G.X. Wang, H.L. Zhang, W.Z. Wang, Sep. Purif. Technol. 268, 118591 (2021)

    Article  CAS  Google Scholar 

  15. K. Alorkua, M. Manoj, C. Yanjuan, Chemosphere 273, 128575 (2021)

    Article  Google Scholar 

  16. W. Fan, X. Wang, M. Cui, D. Zhang, Y. Zhang, T. Yu, L. Guo, Environ. Sci. Technol. 46, 10255–10262 (2012)

    Article  CAS  Google Scholar 

  17. S.Z. Deng, V. Tjoa, H.M. Fan, J. Am. Chem. Soc. 134, 4905–4917 (2012)

    Article  CAS  Google Scholar 

  18. Z.P. Zeng, Y.B. Yan, J. Chen, Adv. Funct. Mater. 29, 1806500 (2019)

    Article  Google Scholar 

  19. L. Xu, F. Zhang, X. Song, Z. Yin, Y. Bu, J. Mater. Chem. A 3, 5923–5933 (2015)

    Article  CAS  Google Scholar 

  20. X.J. Yu, H.H. Chen, Q.G. Ji, Y.Y. Chen, Y.C. Wei, N.N. Zhao, B.H. Yao, Chemosphere 267, 129285 (2021)

    Article  CAS  Google Scholar 

  21. Q. Wei, Y. Wang, H.Y. Qin, J.M. Wu, Y.F. Lu, H.Z. Chi, F. Yang, B. Zhou, H.L. Yu, J.B. Liu, Appl. Catal. B 227, 132–144 (2018)

    Article  CAS  Google Scholar 

  22. X.J. Yu, J. Zhang, J. Zhang, J.F. Niu, J. Zhao, Y.C. Wei, B.H. Yao, Chem. Eng. J. 374, 316–327 (2019)

    Article  CAS  Google Scholar 

  23. K. Sekar, C. Chuaicham, U. Balijapalli, W. Li, K. Wilson, A.F. Lee, K.Sasaki, Appl. Catal. B 284, 119741 (2021)

    Article  CAS  Google Scholar 

  24. M.M. Liu, R. Liu, W. Chen, Biosens. Bioelectron. 45, 206–212 (2013)

    Article  CAS  Google Scholar 

  25. Y.C. Pu, H.Y. Chou, W.S. Kuo, K.H. Wei, Y.J. Hsu, Appl. Catal. B 204, 21–32 (2017)

    Article  CAS  Google Scholar 

  26. S. Vignesh, A.L. Muppudathi, J.K. Sundar, J. Mater. Sci. 29, 10784–10801 (2018)

    CAS  Google Scholar 

  27. M.A. Ebrahimzadeh, S. Mortazavi-Derazkola, M.A. Zazouli, J. Mater. Sci. 30, 10994–11004 (2019)

    CAS  Google Scholar 

  28. R.M. Arán-Ais, R. Rizo, P. Grosse, G. Algara-Siller, K. Dembel, M. Plodinec, T. Lunkenbein, S.W. Chee, B. Roldan, Cuenya, Nat. Commun. 11, 3489 (2020)

    Article  Google Scholar 

  29. A. Li, P. Li, J. Hu, W. Zhang, J. Mater. Sci. 26, 5071–5077 (2015)

    CAS  Google Scholar 

  30. C. Zhan, Q.X. Wang, L.Y. Zhou, X. Han, Y.Y. Wanyan, J.Y. Chen, Y.P. Zheng, Y. Wang, G. Fu, Z.X. Xie, Z.Q. Tian, J. Am. Chem. Soc. 142, 14134–14141 (2020)

    Article  CAS  Google Scholar 

  31. L.C.T. Shoute, K.M. Alam, E. Vahidzadeh, S. Zeng, P. Kumar, P. Kar, K. Shankar, Nanotechnology 32, 374001 (2021)

    Article  CAS  Google Scholar 

  32. S.N. Zhang, M. Li, B. Hua, N.Q. Duan, S.C. Ding, S. Bergens, K. Shankar, J.L. Luo, Chemcatchem 11, 4147–4153 (2019)

    Article  CAS  Google Scholar 

  33. Y.W. Tan, X.Y. Xue, Q. Peng, H. Zhao, T.H. Wang, Y.D. Li, Nano Lett. 7, 3723–3728 (2007)

    Article  CAS  Google Scholar 

  34. T.W. Zhou, Z.G. Zang, J. Wei, Nano Energy 50, 118–125 (2018)

    Article  CAS  Google Scholar 

  35. L.L. Wan, Q.X. Zhou, X. Wang, T.E. Wood, L. Wang, P.N. Duchesne, J.L. Guo, X.L. Yan, M.K. Xia, Y.F. Lie, A.A. Jelle, U. Ulmer, J. Jia, T. Li, W. Sun, G.A. Ozin, Nat. Catal. 2, 889–898 (2019)

    Article  CAS  Google Scholar 

  36. A. Radi, D. Pradhan, Y. Sohn, K. Leung, ACS Nano 4, 1553–1560 (2010)

    Article  CAS  Google Scholar 

  37. J.S. Luo, L. Steier, M.K. Son, Nano Lett. 16, 1848–1857 (2016)

    Article  CAS  Google Scholar 

  38. D.F. Zhang, H. Zhang, L. Guo, K. Zheng, X.D. Han, Z. Zhang, J. Mater. Chem. 19, 5220–5225 (2009)

    Article  CAS  Google Scholar 

  39. C.X. Song, Z.Y. Zhao, X.X. Sun, Y.H. Zhou, Y. Wang, D.B. Wang, Small 15, 1804268 (2019)

    Article  Google Scholar 

  40. J. Xu, Y.Y. Huang, X.L. Cheng, Inorg. Chem. Front. 5, 3140–3147 (2018)

    Article  CAS  Google Scholar 

  41. D.S. Koda, F. Bechstedt, M. Marques, Phys. Rev. B 97, 165402 (2018)

    Article  CAS  Google Scholar 

  42. W.X. Zhang, Z.S. Huang, W.L. Zhang, Nano Res. 7, 1731–1737 (2014)

    Article  CAS  Google Scholar 

  43. S. Das, V. Jayaraman, Prog Mater. Sci. 66, 112–255 (2014)

    Article  CAS  Google Scholar 

  44. Z.Y. Zhou, N. Tian, J.T. Li, Chem. Soc. Rev. 40, 4167–4185 (2011)

    Article  CAS  Google Scholar 

  45. X.W. Zhang, F. Meng, J. R Nano Lett. 14, 3047–3054 (2014)

    Article  CAS  Google Scholar 

  46. S.Z. Liu, Y.C. Zhang, Mater. Res. Bull. 135, 111125 (2021)

    Article  CAS  Google Scholar 

  47. Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 2, 606–618 (2013)

    Article  Google Scholar 

  48. P.X. Li, W.Z. Fu, P.Y. Zhuang, Small 15, 1902535 (2019)

    Article  Google Scholar 

  49. D.Y. Chen, S.S. Huang, R.T. Huang, J. Hazard. Mater. 368, 204–213 (2019)

    Article  CAS  Google Scholar 

  50. I. Shown, S. Samireddi, Y.C. Chang, Nat. Commun. 9, 169 (2018)

    Article  Google Scholar 

  51. Y.P. Chen, X.Y. Wang, M.M. Lao, Nano Energy 64, 103918 (2019)

    Article  CAS  Google Scholar 

  52. F. Zhang, Y.C. Zhang, G.S. Zhang, Z.J. Yang, D.D. Dionysiou, A.P. Zhu, Appl. Catal. B 236, 53–63 (2018)

    Article  CAS  Google Scholar 

  53. A. Rani, A.S. Patel, A. Chakraborti, K. Singh, P. Sharma, J. Mater. Sci. 32, 6168–6184 (2021)

    CAS  Google Scholar 

  54. C. Liu, Z.M. Dong, C.H. Yu, Appl. Surf. Sci. 537, 147754 (2021)

    Article  CAS  Google Scholar 

  55. F.F. You, J.W. Wan, J. Qi, Angew Chem. Int. Ed. 59, 721–724 (2020)

    Article  CAS  Google Scholar 

  56. Z.Z. Cheng, F.M. Wang, T.A. Shifa, Small 13, 1702163 (2017)

    Article  Google Scholar 

  57. J.L. Mu, F. Teng, H. Miao, Y.S. Wang, X.Y. Hu, Appl. Surf. Sci. 501, 143974 (2020)

    Article  CAS  Google Scholar 

  58. P.F. Xu, X.F. Shen, L. Luo, Z. Shi, Z.X. Liu, Z.G. Chen, M.F. Zhu, L.S. Zhang, Environ. Sci. 5, 327–337 (2018)

    CAS  Google Scholar 

  59. X.F. Shen, T.Y. Zhang, P.F. Xu, L.S. Zhang, J.S. Liu, Appl. Catal. B 219, 425–431 (2017)

    Article  CAS  Google Scholar 

  60. J.L. Mu, H. Miao, E.Z. Liu, J. Feng, F. Teng, D.K. Zhang, Y.M. Kou, Y.P. Jin, J. Fan, X.Y. Hu, Nanoscale 10, 11881–11893 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Zhejiang Province (Grant Numbers LQ18E020003 and LY20F040005), The Fundamental Research Funds of Zhejiang Sci-Tech University (Grant Number 2019Q073), National Natural Science Foundation of China (Grant Numbers 51672249 and 11804300).

Funding

Funding was provided by the Natural Science Foundation of Zhejiang Province (Grant Numbers LQ18E020003, LY20F040005, LQ18A040005), The Fundamental Research Funds of Zhejiang Sci-Tech University (Grant Number 2019Q073), National Natural Science Foundation of China (Grant Numbers 51672249 and 11804300).

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the research activities of this paper. XW, LC, HH, CS, QJ, LX and CC performed material preparation, data collection and analysis. The first draft of the manuscript was written by XW, and all authors have commented on previous editions. PW, PL and CC revised the English grammar of the original manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Can Cui.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Chen, L., Hu, H. et al. One-dimensional hierarchical Cu2O@SnS2 heterojunction with enhanced visible-light-driven photocatalytic activities. J Mater Sci: Mater Electron 34, 112 (2023). https://doi.org/10.1007/s10854-022-09407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09407-y

Navigation