Skip to main content

Advertisement

Log in

Low-cost synthesis of lanthanides (Eu3+and Sm3+)-intercalated TiO2 nanostructures: a detailed study on structural, optical and photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure and Lanthanides (Eu3+and Sm3+) ions doped TiO2 nanoparticles were synthesized by the low-cost sol–gel method. The as-synthesized nanoparticles were characterized in detail to reveal their structural, morphological, chemical and optical properties using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–Vis spectroscopy techniques. The particle sizes were found to be decreased upon doping and agglomerations have been seen from XRD and SEM images, respectively. The band gap energy measurements confirmed that the addition of Lanthanides ions cause increase in the band gap energy of the nanocomposites from 3.34 eV to 3.50 eV (ΔE = 0.16 eV). The photocatalytic activities of these samples were investigated by the degradation of methylene blue (MB) under normal sun light. The TiO2:Sm3+ photocatalyst shows 89% degradation efficiency, which is several times higher compared to pure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J.W. Lee, S. Kong, W.S. Kim, J. Kim, Preparation and characterization of SiO2/TiO2 core–shell particles with controlled shell thickness. J. Mater. Chem. Phys. 106, 39 (2007)

    Article  CAS  Google Scholar 

  2. R.A. Zargar, N. Boora, M.M. Hassan, A. Khanand, A.K. Hafiz, Screen printed TiO2 film: a candidate for photovoltaic applications. Mater. Res. Express. 7, 065904 (2020)

    Article  CAS  Google Scholar 

  3. S. Takeda, S. Suzuki, H. Odakaand, H. Hosono, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392, 338 (2001)

    Article  CAS  Google Scholar 

  4. R.A. Zargar, M. Arora, R.A. Bhat, Study of nanosized copper-doped ZnO dilute magnetic semiconductor thick films for spintronic device applications. Appl. Phys. A 124, 36 (2018)

    Article  Google Scholar 

  5. C. Ros, T. Andreu, J.R. Morante, Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. J. Mater. Chem. A 8, 10625–10669 (2020)

    Article  CAS  Google Scholar 

  6. R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Coll. Interface. Sci. 270, 1–27 (2019)

    Article  CAS  Google Scholar 

  7. R.A. Zargar, S. Chackrabarti, M.H. Malik, A.K. Hafiz, Sol-gel syringe spray coating: A novel approach for Rietveld, optical and electrical analysis of CdO Film for optoelectronic applications. Physics Open 7, 100069 (2021)

    Article  CAS  Google Scholar 

  8. M. Miodyńska, A. Mikolajczyk, B. Bajorowicz, J. Zwara, T. Klimczuk, W. Lisowski, G. Trykowski, H.P. Pinto, A. Zaleska-Medynska, Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance. Appl. Catal. B 272, 118962 (2020)

    Article  Google Scholar 

  9. M. Tayyab, Y. Liu, S. Min, R.M. Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires, Chinese. J. Catalysis 43, 1165–1175 (2022). https://doi.org/10.1016/S1872-2067(21)63997-9

    Article  CAS  Google Scholar 

  10. Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Single atom Pt loaded zinc vacancies ZnO–ZnS induced type electron transport for efficiency photocatalytic H2 evolution. Solar RRL (2021). https://doi.org/10.1002/solr.202100536

    Article  Google Scholar 

  11. G. Liu, M. Feng, M. Tayyab, J. Gong, M. Zhang, M. Yang, K. Lin, Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon. J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2021.125224

    Article  Google Scholar 

  12. S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Black TiO2 nanomaterials: a review of recent advances. Chem. Eng. J. 343, 708–736 (2018)

    Article  CAS  Google Scholar 

  13. H. Hu, Y. Lin, Y.H. Hu, Synthesis, structures and applications of single component core-shell structured TiO2: a review. Chem. Eng. J. 375, 122029 (2019)

    Article  CAS  Google Scholar 

  14. V. Mansfeldova, M. Zlamalova, H. Tarabkova, P. Janda, M. Vorokhta, L. Piliai, L. Kavan, Work function of TiO2 (anatase, rutile, and brookite) single crystals: effects of the environment. J. Phys. Chem. C 125(3), 1902–1912 (2021)

    Article  CAS  Google Scholar 

  15. L.K. Preethi, T. Mathews, M. Nand, S.N. Jha, C.S. Gopinath, S. Dash, Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: an efficient photocatalyst for water splitting. Appl. Catal. B 218, 9–19 (2017)

    Article  CAS  Google Scholar 

  16. J.B. Pérez, M. Courel, R.C. Valderrama, I. Hernández, M. Pal, F.P. Delgado, N.R. Mathews, Structural, optical, and photoluminescence properties of erbium doped TiO2 films. Vacuum 169, 108873 (2019)

    Article  Google Scholar 

  17. S. Singh, P. Srivastava, L. Bahadur, Hydrothermal synthesized Nd-doped TiO2 with Anatase and Brookite phases as highly improved photoanode for dye-sensitized solar cell. Sol. Energy 208, 173–181 (2020)

    Article  Google Scholar 

  18. A. Jraba, J. Soli, L.E. Mir, E. Elaloui, Improvement of properties and catalytic activity of TiO2 for the adsorption and solar photodecomposition of ibuprofen: effect of Er3+ and Pr3+ doping, J. Mater. Sci.: Mater. Electron. 33, 15005–15022 (2022). https://doi.org/10.1007/s10854-022-08418-z

    Article  CAS  Google Scholar 

  19. A. Jraba, Z. Anna, E. Elaloui, Physicochemical properties of La3+-doped TiO2 monolith prepared by sol–gel approach: application to adsorption and solar photodegradation of ibuprofen. J. Materials Science 31, 1072–1083 (2020). https://doi.org/10.1007/s10854-019-02619-9

    Article  CAS  Google Scholar 

  20. A. Jraba, Z. Anna, E. Elaloui, Effects of Sr2+, Fe3+ and Al3+ doping on the properties of TiO2 prepared using the sol-gel method. C. R. Chimie 22, 648–658 (2019). https://doi.org/10.1016/j.crci.2019.10.003

    Article  CAS  Google Scholar 

  21. D. De la Cruz, J.C. Arévalo, G. Torres, R.B. Margulis, C. Ornelas, A. Aguilar-Elguézabal, TiO2 doped with Sm3+ by sol–gel: synthesis, characterization and photocatalytic activity of diuron under solar light. Catal. Today 166(1), 152–158 (2011)

    Article  Google Scholar 

  22. K.M. Emran, S.M. Ali, H.E. Alanazi, Novel hydrazine sensors based on Pd electrodeposited on highly dispersed lanthanide-doped TiO2 nanotubes. J. Electroanal. Chem. 856, 113661 (2020)

    Article  CAS  Google Scholar 

  23. Z. Zhang, Q. Han, J.W. Lau, B. Xing, Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: recent progress and perspectives. ACS Mater. Lett. 2(11), 1516–1531 (2020)

    Article  CAS  Google Scholar 

  24. J. Jin, H. Li, W. Bi, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr 3 and the encapsulation layer Al2O3. Sol. Energy 198, 187–193 (2020)

    Article  CAS  Google Scholar 

  25. S.K. Karunakaran, G.M. Arumugam, W. Yang, S. Ge, S.N. Khan, Y. Mai, X. Lin, G. Yang, Europium (II)doped all inorganic CsPbBr 3 perovskite solar cells with carbon electrodes. Solar Rrl 4(11), 2000390 (2020)

    Article  CAS  Google Scholar 

  26. E. Akman, S. Akin, T. Ozturk, B. Gulveren, S. Sonmezoglu, Europium and terbium lanthanide ions co-doping in TiO2 photoanode to synchronously improve light-harvesting and open-circuit voltage for high-efficiency dye-sensitized solar cells. Sol. Energy 202, 227–237 (2020)

    Article  CAS  Google Scholar 

  27. H. Peng, R. Guo, H. Lin, Photocatalytic reduction of CO2 over Sm-doped TiO2 nanoparticles. J. Rare Earths 38(12), 1297–1304 (2020)

    Article  CAS  Google Scholar 

  28. X. Zhang, Y. Huang, B. Wang, X. Chang, H. Yang, J. Lan, S. Wang, H. Qiao, H. Lin, S. Han, Y. Guo, A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceram. Int. 46(10), 14796–14807 (2020)

    Article  CAS  Google Scholar 

  29. S.M. Al-Shomar, Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application. Mater. Res. Express. 8, 026402 (2021)

    Article  CAS  Google Scholar 

  30. R. Ramos Jr. et al., Emission properties related to distinct phases of Sol-Gel Dip-coating titanium dioxide and carrier photo-excitation in different energy ranges. Mater. Res. 20(4), 866–873 (2017)

    Article  CAS  Google Scholar 

  31. S. Ezhil Arasi, J. Madhavan, M. Victor Antony Raj, Effect of samarium (Sm 3+ ) doping on structural, optical properties and photocatalytic activity of titanium dioxide nanoparticles. J. Taibah Univ Sci. 12(2), 186–190 (2018)

    Article  Google Scholar 

  32. A. Arunachalam, S. Dhanapandian, C. Manoharanand, G. Sivakumar, Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity Spectrochim. Acta A 138, 105–112 (2015)

    Article  CAS  Google Scholar 

  33. B.K. Kaleji, R. Sarraf-Mamoorya, A.A. Fujishima, Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater. Chem. Phys. 132, 210–215 (2012)

    Article  CAS  Google Scholar 

  34. M. Pal, U. Pal, J.M. Gracia, Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7, 2–12 (2012)

    Article  Google Scholar 

  35. G.K. Williamson, W.H. Hall, Acta Metall 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  36. R. Vidhy, R. Gandhimathi, M. Sankareswari, K. Neyvasagam, Influence of Cu concentration on the structural, morphological, optical and catalytic properties of TiO2 thin films. Indian J Pure Appl Phys 57, 475–482 (2019)

    Google Scholar 

  37. R.A. Zargar, Fabrication and improved response of ZnO-CdO composite films under different laser irradiation dose. Sci. Rep. 12, 10096 (2022)

    Article  CAS  Google Scholar 

  38. S. Ezhil Arasi, M. Joseph, V.A. Raj, Effect of samarium (Sm 3+) doping on structural, optical properties and photocatalytic activity of titanium dioxide nanoparticles. J. Taibah Univ. Sci 12, 186–190 (2018)

    Article  Google Scholar 

  39. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 7, 4871–4888 (2012)

    CAS  Google Scholar 

  40. R.S. Devi, D.R. Venkatesh, D.R. Sivaraj, Synthesis of titanium dioxide nanoparticles by sol-gel technique. Int. J. Innov. Res. Sci. Eng. Technol. 3, 15206–15211 (2014)

    Article  Google Scholar 

  41. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001)

    Article  CAS  Google Scholar 

  42. K. Nohara, H. Hidaka, E. Pelizzetti, N. Serpone, J. Photochem. Photobiol. A: Chem. 102, 265 (1997)

    Article  CAS  Google Scholar 

Download references

Funding

RA Zargar is highly thankful to BGSB University for providing research facility and peaceful environment to carry out this wonderful research for the visibility of university. The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.2/215/43.

Author information

Authors and Affiliations

Authors

Contributions

RAZ, M, MA, VN, KK, TM and AKH: Conceptualization, Data curation, Formal analysis, Writing—original draft, Supervision, MAM, MS: Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing—review and editing.

Corresponding authors

Correspondence to R. A. Zargar or Mohd Shkir.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, R.A., Imran, M., Arora, M. et al. Low-cost synthesis of lanthanides (Eu3+and Sm3+)-intercalated TiO2 nanostructures: a detailed study on structural, optical and photocatalytic applications. J Mater Sci: Mater Electron 33, 26931–26942 (2022). https://doi.org/10.1007/s10854-022-09357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09357-5

Navigation