Skip to main content

Advertisement

Log in

Synergistic effect of reduced graphene oxide and carbon nanotubes for improved supercapacitive performance electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors are new generation efficient energy storage devices having applications in diverse fields ranging from miniaturized wearable electronics to electric vehicles. Nanocarbonaceous materials like two-dimensional graphene (single sheet of graphite) and one-dimensional tubular carbon nanotubes (seamless cylinder made from graphene sheet) are highly preferred for making supercapacitor electrodes owing to their superior physiochemical properties. Herein, we have reported a facile method to prepare a nanohybrid of reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWCNTs) to exploit the properties of both nanocarbons through a single nanohybrid. During the formation of the nanohybrid, carbon nanotubes sit in between graphene sheets and in turn enhance the available surface area for interactions with electrolyte ions. Nanohybrids of carbon nanotubes and graphene with varied content of carbon nanotubes (1wt%, 5wt%, 10wt%, 15wt%, 20wt%) in graphene were prepared, and their supercapacitive performances were carefully examined. The nanohybrids were reduced through non-hazardous microwave treatment method. Nanohybrids were characterized by field emission scanning electron microscopy, UV-visible spectroscopy, Fourier transformed infrared spectroscopy and X-ray diffraction techniques. Electrochemical supercapacitive characterization of the nanohybrid with rGO/15wt% MWCNTs displayed maximum specific capacitance of 524.40 F/g at a scan rate of 2 mV/s. The rGO/MWCNT nanohybrid showed very good Coulombic efficiency and high stability even after 2000 cycles. Maximum energy density of the nanohybrid-based electrode was calculated to be 42.64 Wh/kg at power density of 651.35 W/ kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or used in the study are presented in the submitted article.

References

  1. M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, M. Sathish, ACS appl. Mater. Interfaces 8(51), 35191 (2016)

    Article  CAS  Google Scholar 

  2. K. Sharma, A. Arora, S.K. Tripathi, J Ener. Storage 21, 801 (2019)

    Article  CAS  Google Scholar 

  3. Y. Kim, V. Raghunathan, A. Raghunathan, IEEE. Transt. Multi-Scale. Computing Sys 3(1), 12 (2016)

    Article  Google Scholar 

  4. Y. Ping, Y. Zhang, Y. Gong, B. Cao, Q. Fu, C. Pan, Electrochim. Acta 250, 84 (2017)

    Article  CAS  Google Scholar 

  5. M. Adil, M.A. Abdelkareem, E.T. Sayed, C. Rodriguez, M. Ramadan, A.G. Olabi, Reference Module in Materials Science and Materials Engineering (Elsevier, BV, 2021)

    Google Scholar 

  6. Y. Yang, Y. Han, W. Jiang, Y. Zhang, Y. Xu, A.M. Ahmed, Appl. Sci. 12(1), 354 (2021)

    Article  Google Scholar 

  7. A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, J. Zuo, J. Pedrós, F. Calle, J. Martinez, Sustainable Energy Fuels 5(5), 1235 (2021)

    Article  CAS  Google Scholar 

  8. Z.S. Iro, C. Subramani, S.S. Dash, Int. J. Electrochem. Sci. 11(12), 10628 (2016)

    Article  CAS  Google Scholar 

  9. S. Ahmed, A. Ahmed, M. Rafat, J. Saudi Chem. Soc. 22(8), 993–1002 (2018)

    Article  CAS  Google Scholar 

  10. S. Rajagopal, R.P. Vallikkattil, M.M. Ibrahim, D.G. Velev, Condens. Matter 7(1), 6 (2022)

    Article  CAS  Google Scholar 

  11. M.E. Birch, T.A. Ruda-Eberenz, M. Chai, R. Andrews, R.L. Hatfield, Ann. Occup. Hyg. 57(9), 1148 (2013)

    CAS  Google Scholar 

  12. S. Gadipelli, Z.X. Guo, Prog. Mater Sci. 69, 1 (2015)

    Article  CAS  Google Scholar 

  13. R. Liu, Y. Meng, D. Gu, B. Tu, D. Zhao, Studies in surface science and catalysis (Elsevier, 2007), Vol. 170, pp. 1721–1733.

  14. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3(9), 1294 (2010)

    Article  CAS  Google Scholar 

  15. Q. Zhou, M. Wu, M. Zhang, G. Xu, B. Yao, C. Li, G. Shi, Mater. Today. Energy. 6, 181 (2017)

    Article  Google Scholar 

  16. V. Sahu, S. Shekhar, R.K. Sharma, G. Singh, ACS Appl. Mater. Interfaces. 7(5), 3110 (2015)

    Article  CAS  Google Scholar 

  17. S. Woo, Y.-R. Kim, T.D. Chung, Y. Piao, H. Kim, Electrochim. Acta 59, 509 (2012)

    Article  CAS  Google Scholar 

  18. S.A. Bansal, A.P. Singh, S. Kumar, Mater. Res. Express 5(7), 075602 (2018)

    Article  Google Scholar 

  19. M. Yen, M. Hsiao, S. Liao, P. Liu, H. Tsai, C.M. Ma, N. Pu, M. Ger, Carbon 49(11), 3597 (2011)

    Article  CAS  Google Scholar 

  20. E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen, C. Gao, Carbon 133, 316 (2018)

    Article  CAS  Google Scholar 

  21. D. Yu, L. Dai, J. Phys. Chem. Lett. 1(2), 467 (2010)

    Article  CAS  Google Scholar 

  22. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, ACS Appl. Mater. Interfaces. 6(20), 17426 (2014)

    Article  CAS  Google Scholar 

  23. S. Rattan, S. Kumar, J.K. Goswamy, J. Nanosci. Nanotechnol. 21(3), 1667 (2021)

    Article  CAS  Google Scholar 

  24. S. Kumar, M. Kaur, Mater. Chem. Phys. 259, 123967 (2021)

    Article  CAS  Google Scholar 

  25. S. Kumar, I. Kaur, K. Dharamvir, L.M. Bharadwaj, J. Colloid Interface Sci. 369(1), 23 (2012)

    Article  CAS  Google Scholar 

  26. Y. Sheng, X. Tang, E. Peng, J. Xue, J. Mater. Chem. B 1, 512 (2013)

    Article  CAS  Google Scholar 

  27. A. Jabbar, G. Yasin, W.Q. Khan, M.Y. Anwar, R.M. Korai, M.N. Nizam, G. Muhyodin, RSC Adv. 7(49), 31100 (2017)

    Article  CAS  Google Scholar 

  28. S. Rattan, S. Kumar, J.K. Goswamy, Mater. Today: Proceedings 26, 3327 (2020)

    CAS  Google Scholar 

  29. M. Kaur, J.K. Gowsamy, P. Kumar, S. Kumar, Emergent Mater. 3(2), 181 (2020)

    Article  Google Scholar 

  30. A. Kaushal, S.K. Dhawan, V, Singh. AIP Conf. Proc. 2115, 030106 (2019)

    Article  CAS  Google Scholar 

  31. T. H. Thi Vu, T. T. Thi Tran, H. N. Thi Le, P. H. Thi Nguyen, N. Q. Bui and N. Essayem, Bulletin of Materials Science 38 (3), 667 (2015).

  32. N. Kumar, V.C. Srivastava, ACS Omega 3(8), 10233 (2018)

    Article  CAS  Google Scholar 

  33. T.K. Ghosh, S. Gope, D. Rana, I. Roy, G. Sarkar, S. Sadhukhan, A. Bhattacharya, K. Pramanik, S. Chattopadhyay, M. Chakraborty, Bull. Mater. Sci. 39(2), 543 (2016)

    Article  CAS  Google Scholar 

  34. S.A. Bansal, A.P. Singh, S. Kumar, J. Nanosci. Nanotechnol. 19(7), 4000 (2019)

    Article  CAS  Google Scholar 

  35. S. Lv, F. Fu, S. Wang, J. Huang, L. Hu, Electron. Mater. Lett. 11(4), 633–642 (2015)

    Article  CAS  Google Scholar 

  36. Y. Wimalasiri, L. Zou, Carbon 59, 464 (2013)

    Article  CAS  Google Scholar 

  37. M. Sethi, U.S. Shenoy, D.K. Bhat, Nanoscale Adv. 2, 4229 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

Suresh Kumar thanks Department of Science and Technology (DST), Science and Engineering Research Board (SERB), for ECRA research grant (ECR/2016/001104).

Author information

Authors and Affiliations

Authors

Contributions

Anjali helped in investigation, experimentation and writing original draft. Twinkle performed methodology and experimentation. SR contributed to data validation and characterization. MK curated the data. SK was involved in conceptualization, editing and supervision. JKG helped in supervision and editing.

Corresponding authors

Correspondence to Suresh Kumar or J. K. Goswamy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The submission has been approved by all co-authors.

Research involving human and/or animal participants

This study does not involve any studies with human participants and/or animals.

Informed consent

Informed consent was received from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjali, Twinkle, Rattan, S. et al. Synergistic effect of reduced graphene oxide and carbon nanotubes for improved supercapacitive performance electrodes. J Mater Sci: Mater Electron 33, 26841–26851 (2022). https://doi.org/10.1007/s10854-022-09349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09349-5

Navigation