Skip to main content
Log in

Improvement of scandium ion substitution on the initial permeability and saturation magnetization of nickel-zinc-cobalt ferrite for high-frequency devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiZnCo ferrite has a wide range of applications in high-frequency devices, but its performance can be further improved to meet more requirements. In this work, Sc3+-substituted Ni0.5Zn0.4Co0.1ScxFe2-xO4 (NZCScF, 0 ≤ x ≤ 0.1) ferrite soft magnetic materials were successfully prepared by sol–gel self-propagating approach. After using Sc3+ doping, the dielectric loss and dielectric constant are significantly reduced. The intensity of the coercive field decreases significantly with a rise in the Sc3+ content. It is noteworthy that after adding Sc3+ ions, the saturation magnetization can reach 94.27 emu/g, an increase of about 27%, and the initial permeability is increased by about 73%. In the high-frequency scope, the magnetic losses increase very little and up to 100 MHz the magnetic losses remain low. In conclusion, Sc3+ substitution effectively improves the electromagnetic properties of NiZnCo ferrite and greatly enhances the saturation magnetization and initial permeability. It can serve as a guide for the material application of a series of high-frequency devices such as radio-frequency microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Z.K. Heiba, M.B. Mohamed, A. Badawi, (1–x)NiFe2O4/xZnMn2O4 solid solution: structure and dielectric properties investigation. J. Mater. Sci. 33, 10524–10539 (2022)

    CAS  Google Scholar 

  2. M.B. Mohamed, A.M. Wahba, Z.K. Heiba, Effect of Zn substitution on structural, magnetic, and electric properties of Ni1−xZnxFe1.78Al0.2Gd 0.02O4 nanoparticles. J. Supercond. Novel Magn. 28, 3675–3683 (2015)

    Article  CAS  Google Scholar 

  3. Z.K. Heiba, M.B. Mohamed, M. Ghannam, N.M. Farag, A. El-naggar, Y. Altowairqi, O. Polymers, Materials, exploring the effect of Fe/Cr doping on structural and optical characteristics of nano ZnMn2O4. J. Inorg. Organomet. Polym. Mater. 32, 23–36 (2022)

    Article  CAS  Google Scholar 

  4. S.M. Ghoreishi, M. Behpour, A. Khoobi, S. Masoum, Application of experimental design for quantification and voltammetric studies of sulfapyridine based on a nanostructure electrochemical sensor. Arabian J. Chem. 10, S3156–S3166 (2017)

    Article  CAS  Google Scholar 

  5. S.M. Ghoreishi, M. Behpour, M. Mortazavi, A. Khoobi, Fabrication of a graphene oxide nano-sheet modified electrode for determination of dopamine in the presence of tyrosine: a multivariate optimization strategy. J. Mol. Liq.a 215, 31–38 (2016)

    Article  CAS  Google Scholar 

  6. Z.K. Heiba, M.B. Mohamed, L. Arda, N. Dogan, Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J. Magn. Magn. Mater. 391, 195–202 (2015)

    Article  CAS  Google Scholar 

  7. Z.K. Heiba, M.B. Mohamed, Structural phase analysis, optical and magnetic properties of nano Mn-doped LiFe5O8. Appl. Phys. A 124(12), 1–10 (2018)

    Article  Google Scholar 

  8. A. Khoobi, F. Shahdost-fard, M. Arbabi, M. Akbari, H. Mirzaei, M. Nejati, H.R. Banafshe, Sonochemical synthesis of ErVO4/MnWO4 heterostructures: application as a novel nanostructured surface for electrochemical determination of tyrosine in biological samples. Polyhedron 177, 114302 (2020)

    Article  CAS  Google Scholar 

  9. F. Nazari, S.M. Ghoreishi, A. Khoobi, Bio-based Fe3O4/chitosan nanocomposite sensor for response surface methodology and sensitive determination of gallic acid. Intern. J. Biol. Macromol. 160, 456–469 (2020)

    Article  CAS  Google Scholar 

  10. M. Ishaque, M.U. Islam, M.A. Khan, I.Z. Rahman, A. Genson, S. Hampshire, Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Physica B 405, 1532–1540 (2010)

    Article  CAS  Google Scholar 

  11. Z.K. Heiba, A.M. Wahba, M.B. Mohamed, Phase analysis and cation distribution correlated with magnetic properties of spinel Ba1− xSrxFe2O4 ferrites prepared at different annealing temperatures. J. Mater. Sci.: Mater. Electronics 31(15), 12482–12492 (2020)

    CAS  Google Scholar 

  12. S. Nasrollahi, S.M. Ghoreishi, A.H. Ebrahimabadi, A. Khoobi, Gas chromatography-mass spectrometry analysis and antimicrobial, antioxidant and anti-cancer activities of essential oils and extracts of Stachys schtschegleevii plant as biological macromolecules. Intern. J. Biol. Macromol. 128, 718–723 (2019)

    Article  CAS  Google Scholar 

  13. H.-S. Guo, L.-Z. Li, R. Wang, Z. Xiong, Y.-L. Yan, Z.-C. Zhong, X. Chang, Cd-substituted NiZnCo ferrite with high dielectric constant and low coercivity for high-frequency electronic devices. Ceram. Int. 48, 3609–3614 (2022)

    Article  CAS  Google Scholar 

  14. L.-Z. Li, X.-X. Zhong, R. Wang, X.-Q. Tu, L. He, F.-H. Wang, Effects of Ce substitution on the structural and electromagnetic properties of NiZn ferrite. J. Magn. Magn. Mater. 475, 1–4 (2019)

    Article  CAS  Google Scholar 

  15. Z. Zheng, X. Wu, Q. Feng, V.G. Harris, Low loss and tailored high-frequency performances of BaO-doped NiZnCo magneto-dielectric ferrites. J. Am. Ceram. Soc. 103, 1248–1257 (2020)

    Article  CAS  Google Scholar 

  16. X.H. Wu, J.K. Xu, X.Y. Huo, J.B. Chen, Q. Zhang, F.Y. Huang, Y.X. Li, H. Su, L.Z. Li, Nb2O5-doped NiZnCo ferrite ceramics with ultra-high magnetic quality factor and low coercivity for high-frequency electronic devices. J Eur Ceram Soc 41, 5193–5200 (2021)

    Article  CAS  Google Scholar 

  17. P. Akhtar, M.N. Akhtar, M.A. Baqir, A. Ahmad, M.U. Khallidoon, M. Farhan, M.A. Khan, Structural and magnetic evaluations of rare-earths (Tb, Pr, Ce, Gd, Y)-doped spinel ferrites for high frequency and switching applications. J. Mater. Sci.: Mater. Electron. 32, 7692–7703 (2021)

    CAS  Google Scholar 

  18. K. Chen, L. Jia, X. Yu, H. Zhang, A low loss NiZnCo ferrite, prepared using a hydrothermal method, for antenna applications. J. Appl. Phys. 115, 17A520 (2014)

    Article  Google Scholar 

  19. J.-L. Mattei, D. Souriou, A. Chevalier, Magnetic and dielectric properties in the UHF frequency band of half-dense Ni-Zn-Co ferrites ceramics with Fe-excess and Fe-deficiency. J. Magn. Magn. Mater. 447, 9–14 (2018)

    Article  CAS  Google Scholar 

  20. Z. Xiao, X. Sun, H. Zhang, C. Wang, L. Liu, Z. Yang, T. Zhang, L.B. Kong, Low temperature sintered magneto-dielectric ferrite ceramics with near net-shape derived from high-energy milled powders. J. Alloy. Compd. 751, 28–33 (2018)

    Article  CAS  Google Scholar 

  21. N. Ghazi, H. Mahmoudi Chenari, F.E. Ghodsi, Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. J. Magn. Magn. Mater. 468, 132–140 (2018)

    Article  CAS  Google Scholar 

  22. A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Effect of Gd3+ ion distribution on structural and magnetic properties in nano-sized Mn–Zn ferrite particles. Ceram. Int. 41, 1297–1302 (2015)

    Article  CAS  Google Scholar 

  23. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceram. Int. 46, 28035–28041 (2020)

    Article  CAS  Google Scholar 

  24. L.-Z. Li, X.-X. Zhong, R. Wang, X.-Q. Tu, L. He, Effects of Al substitution on the properties of NiZnCo ferrite nanopowders. J. Mater. Sci.: Mater. Electron. 29, 7233–7238 (2018)

    CAS  Google Scholar 

  25. A. Anwar, S. Zulfiqar, M.A. Yousuf, S.A. Ragab, M.A. Khan, I. Shakir, M.F. Warsi, Impact of rare earth Dy+3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Market. Res. 9, 5313–5325 (2020)

    CAS  Google Scholar 

  26. R. Yang, X. Yu, H. Li, C. Wang, C. Wu, W. Zhang, W. Guo, Effect of Mg doping on magnetic induction heating of Zn–Co ferrite nanoparticles. J. Alloy. Compd. 851, 156907 (2021)

    Article  CAS  Google Scholar 

  27. R.K. Singh, J. Shah, R.K. Kotnala, Magnetic and dielectric properties of rare earth substituted Ni0.5Zn0.5Fe1.95R0.05O4 (R = Pr, Sm and La) ferrite nanoparticles. Mater. Sci. Eng.: B 210, 64–69 (2016)

    Article  CAS  Google Scholar 

  28. M. Naeem, N.A. Shah, I.H. Gul, A. Maqsood, Structural, electrical and magnetic characterization of Ni–Mg spinel ferrites. J. Alloy. Compd. 487, 739–743 (2009)

    Article  CAS  Google Scholar 

  29. M.V. Santhosh Kumar, G.J. Shankarmurthy, E. Melagiriyappa, K.K. Nagaraja, H.S. Jayanna, M.P. Telenkov, Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method. J. Mater. Sci.: Mater. Electronics 29, 12795–12803 (2018)

    CAS  Google Scholar 

  30. Z. Zheng, H. Zhang, Q. Yang, L. Jia, Enhanced high-frequency properties of NiZn ferrite ceramic with Co2Z-hexaferrite addition. J. Am. Ceram. Soc. 97, 2016–2019 (2014)

    Article  CAS  Google Scholar 

  31. L.-Z. Li, X.-X. Zhong, R. Wang, X.-Q. Tu, Structural, magnetic and electrical properties of Zr-substitued NiZnCo ferrite nanopowders. J. Magn. Magn. Mater. 435, 58–63 (2017)

    Article  CAS  Google Scholar 

  32. E.J.W. Verwey, J.H. de Boer, Cation arrangement in a few oxides with crystal structures of the spinel type. Recl. Trav. Chim. Pays-Bas 55, 531–540 (1936)

    Article  CAS  Google Scholar 

  33. A. Lakshman, P.S.V.S. Rao, B.P. Rao, K.H. Rao, Electrical properties of In<sup>3+</sup>and Cr<sup>3+</sup>substituted magnesium–manganese ferrites. J. Phys. D Appl. Phys. 38, 673–678 (2005)

    Article  CAS  Google Scholar 

  34. H. Jia, W. Liu, Z. Zhang, F. Chen, Y. Li, J. Liu, Y. Nie, Monodomain MgCuZn ferrite with equivalent permeability and permittivity for broad frequency band applications. Ceram. Int. 43, 5974–5978 (2017)

    Article  CAS  Google Scholar 

  35. F. Liu, P. Huang, D. Huang, S. Liu, Q. Cao, X. Dong, H. Zhang, F. Ko, W. Zhou, Smart “on-off” responsive drug delivery nanosystems for potential imaging diagnosis and targeted tumor therapy. Chem. Eng. J. 365, 358–368 (2019)

    Article  CAS  Google Scholar 

  36. M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)

    Article  CAS  Google Scholar 

  37. I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  CAS  Google Scholar 

  38. Z. Liu, Z. Peng, C. Lv, X. Fu, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017)

    Article  CAS  Google Scholar 

  39. Z.C. Zhong, L.Z. Li, X.H. Wu, X.X. Zhong, Z.X. Tao, H.S. Guo, F.H. Wang, T. Wang, Influence of Nd substitution on the structural, magnetic and electrical properties of NiZnCo ferrites. Ceram. Intern. 47(7), 8781–8786 (2021)

    Article  CAS  Google Scholar 

  40. X.H. Wu, L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, F.H. Wang, Effects of HfO2 dopant on the structure, magnetic and electrical properties of NiZnCo ferrites. Ceram. Intern. 45, 10776–10781 (2019)

    Article  CAS  Google Scholar 

  41. K. Jalaiah, K.C. Mouli, R.V. Krishnaiah, K.V. Babu, P.S. Rao, Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method. Heliyon 534, 125–133 (2018)

    CAS  Google Scholar 

  42. H.S. Guo, L. Zhang, Y.L. Yan, J. Zhang, J. Wang, S.Y. Wang, L.Z. Li, X.H. Wu, (2022) Effect of lanthanum substitution on structural, magnetic, and electric properties of Ni–Zn–Co ferrites for radio frequency and microwave devices. Ceram. Intern. (2022). https://doi.org/10.1016/j.ceramint.2022.04.275

    Article  Google Scholar 

  43. Z. Xueyun, Y. Dongsheng, Z. Liling, (2021) Improved cut-off frequency in Gd/La doped NiZnCo ferrites. Mater. Sci. Eng. 272, 115334 (2021)

    Article  Google Scholar 

  44. X.-H. Wu, L.-Z. Li, X.-X. Zhong, R. Wang, X.-Q. Tu, L. He, F.-H. Wang, Effects of HfO2 dopant on the structure, magnetic and electrical properties of NiZnCo ferrites. Ceram. Int. 45, 10776–10781 (2019)

    Article  CAS  Google Scholar 

  45. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475–3518 (1991)

    Article  CAS  Google Scholar 

  46. K. Sun, J. Wang, Y. Yang, Y. Li, Z. Yu, Z. Lan, X. Jiang, R. Guo, C. Wu, Influence of Ta2O5–Co2O3 co-doping on the magnetic property of NiMgCuZn ferrites. Physi. B 476, 122–128 (2015)

    Article  CAS  Google Scholar 

  47. A.C.F.M. Costa, E. Tortella, M.R. Morelli, R.H.G.A. Kiminami, Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J. Magn. Magn. Mater. 256, 174–182 (2003)

    Article  CAS  Google Scholar 

  48. M. Drofenik, A. Znidarsic, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Am. Ceram. Soc. 81, 2841–2848 (1998)

    Article  CAS  Google Scholar 

  49. H. Su, H. Zhang, X. Tang, Y. Jing, Influence of microstructure on permeability dispersion and power loss of NiZn ferrite. J. Appl. Phys. 103, 093903 (2008)

    Article  Google Scholar 

  50. Z. Zheng, Q. Feng, Q. Xiang, Z. Di, V.G. Harris, Low-loss NiZnCo ferrite processed at low sintering temperature with matching permeability and permittivity for miniaturization of VHF-UHF antennas. J. Appl. Phys. 121, 063901 (2017)

    Article  Google Scholar 

  51. A. Globus, P. Duplex, Effective anisotropy in polycrystalline materials. separation of components. J. Appl. Phys. 39, 727–729 (1968)

    Article  CAS  Google Scholar 

  52. M.T. Johnson, E.G. Visser, A coherent model for the complex permeability in polycrystalline ferrites. IEEE Trans. Magn. 26, 1987–1989 (1990)

    Article  CAS  Google Scholar 

  53. L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, R.D. Guo, Z.Y. Xu, structural, magnetic and electrical properties in al-substitued niznco ferrite prepared via the sol-gel auto-combustion method for LTCC technology. RSC Adv. 7(62), 39198–39203 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Natural Science Foundation of Sichuan Province and Transfer Payment Project of Sichuan Province under Grant nos. 2022NSFSC0524 and R21ZYZF0001.

Funding

Funding was provided by the Natural Science Foundation of Sichuan Province, (Grant No. 2022NSFSC0524), Transfer Payment Project of Sichuan Province under Grant nos, (Grant No. R21ZYZF0001).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by S-JH. And the manuscript was written by S-JH. Author L-ZL contributed to the study conception and design. The authors JT, RW, and ZX guide the experimental theoretical analysis. Author X-HW helped measure sample performance. Authors H-SG, XC, and Z-CZ contributed to the experimental implementation.

Corresponding author

Correspondence to Le-Zhong Li.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SJ., Li, LZ., Tang, J. et al. Improvement of scandium ion substitution on the initial permeability and saturation magnetization of nickel-zinc-cobalt ferrite for high-frequency devices. J Mater Sci: Mater Electron 33, 26813–26824 (2022). https://doi.org/10.1007/s10854-022-09346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09346-8

Navigation