Skip to main content
Log in

Sensitive, selective and low detection limit of NO2 gas sensor based on Cu/ZnO/rGO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO and copper-doped ZnO nanocomposites with 1, 3, 5 and 7 wt% copper were synthesized using a simple co-precipitation method. Further, GO was synthesized by modified Hummer’s method and the formation of Cu/ZnO/rGO composites was carried out by using chemical route. The structural properties of the synthesized nanocomposites were investigated using X-ray diffraction spectroscopy that revealed a hexagonal wurtzite structure of ZnO which remained intact even after incorporation of Cu\(^{2+}\) ions into ZnO lattice. Optical studies revealed increased defect density and oxygen vacancies in the ZnO structure that can be utilized effectively for NO2 sensing application. Moreover, 5 wt% Cu/ZnO (ZC5) exhibited a nanorod-like morphology. Furthermore, ZC5 showed excellent sensing response (SR = 5) towards NO2 with lower detection limit (LOD) of 1 ppm which further improved due to rGO incorporation (ZCR2) (SR = 6.79) at 200 °C. The synthesized nanocomposites also exhibited very good stability \(\approx\) 90 and 75\(\%\) for ZC5 and ZCR2 nanocomposites, respectively, over 30 days. Thus, ZC5 and ZCR2 can potentially be utilized as effective NO\(_2\) gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Shendage, V. Patil, S. Patil, S. Vanalakar, J. Bhosale, J. Kim, P. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films. J. Anal. Appl. Pyrol. 125, 9–16 (2017)

    Article  CAS  Google Scholar 

  2. J.M. Peters, E. Avol, W. Navidi, S.J. London, W.J. Gauderman, F. Lurmann, W.S. Linn, H. Margolis, E. Rappaport, H. Gong Jr. et al., A study of twelve southern california communities with differing levels and types of air pollution: I. Prevalence of respiratory morbidity. Am. J. Respir. Crit. Care Med. 159(3), 760–767 (1999)

    Article  CAS  Google Scholar 

  3. R. Ab Kadir, W. Zhang, Y. Wang, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, G. Bryant, M. Taylor, K. Kalantar-zadeh, Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J. Mater. Chem. A 3(15), 7994–8001 (2015)

    Article  CAS  Google Scholar 

  4. L. Xu, R. Xing, J. Song, W. Xu, H. Song, ZnO–SnO2 nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties. J. Mater. Chem. C 1(11), 2174–2182 (2013)

    Article  CAS  Google Scholar 

  5. Z. Zheng, J. Yao, B. Wang, G. Yang, Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  6. M.A. Haija, A.F. Abu-Hani, N. Hamdan, S. Stephen, A.I. Ayesh, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloys Compd. 690, 461–468 (2017)

    Article  Google Scholar 

  7. N.V. Long, Y. Yang, M. Yuasa, C.M. Thi, Y. Cao, T. Nann, M. Nogami, Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 4(16), 8250–8255 (2014)

    Article  CAS  Google Scholar 

  8. B. Bhangare, N.S. Ramgir, A. Pathak, K.R. Sinju, A.K. Debnath, S. Jagtap, N. Suzuki, K.P. Muthe, C. Terashima, D.K. Aswal, S.W. Gosavi, A. Fujishima, Role of sensitizers in imparting the selective response of SnO2/RGO based nanohybrids towards H2S, NO2 and H2. Mater. Sci. Semicond. Process. 105, 104726 (2020). https://doi.org/10.1016/j.mssp.2019.104726

    Article  CAS  Google Scholar 

  9. B. Bhangare, N.S. Ramgir, S. Jagtap, A.K. Debnath, K.P. Muthe, C. Terashima, D.K. Aswal, S.W. Gosavi, A. Fujishima, XPS and kelvin probe studies of SnO2/RGO nanohybrids based NO2 sensors. Appl. Surf. Sci. 487, 918–929 (2019). https://doi.org/10.1016/j.apsusc.2019.05.176

    Article  CAS  Google Scholar 

  10. S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, J. Pant, Ce doped nio nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28–35 (2018)

    Article  CAS  Google Scholar 

  11. S. Nie, D. Dastan, J. Li, W.-D. Zhou, S.-S. Wu, Y.-W. Zhou, X.-T. Yin, Gas-sensing selectivity of n-ZnO/p-CO3O4 sensors for homogeneous reducing gas. J. Phys. Chem. Solids 150, 109864 (2021)

    Article  CAS  Google Scholar 

  12. S. Mahajan, S. Jagtap, Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Appl. Mater. Today 18, 100483 (2020). https://doi.org/10.1016/j.apmt.2019.100483

    Article  Google Scholar 

  13. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide-from synthesis to application: a review. Materials 7(4), 2833–2881 (2014)

    Article  Google Scholar 

  14. S. Vanalakar, R. Pawar, M. Suryawanshi, S. Mali, D. Dalavi, A. Moholkar, K. Sim, Y. Kown, J. Kim, P. Patil, Low temperature aqueous chemical synthesis of cds sensitized ZnO nanorods. Mater. Lett.65(3), 548–551 (2011)

    Article  CAS  Google Scholar 

  15. A. Kamble, B. Sinha, K. Chung, A. More, S. Vanalakar, C.W. Hong, J.H. Kim, P. Patil, Facile linker free growth of cds nanoshell on 1-D ZnO: solar cell application. Electron. Mater. Lett. 11(2), 171–179 (2015)

    Article  CAS  Google Scholar 

  16. S. Vanalakar, S. Mali, R. Pawar, N. Tarwal, A. Moholkar, J. Kim, P. Patil, Photoelectrochemical properties of cds sensitized ZnO nanorod arrays: effect of nanorod length. J. Appl. Phys. 112(4), 044302 (2012)

    Article  Google Scholar 

  17. G.N. Narayanan, R.S. Ganesh, A. Karthigeyan, Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016)

    Article  CAS  Google Scholar 

  18. M. Navaneethan, J. Archana, M. Arivanandhan, Y. Hayakawa, Functional properties of amine-passivated zno nanostructures and dye-sensitized solar cell characteristics. Chem. Eng. J. 213, 70–77 (2012)

    Article  CAS  Google Scholar 

  19. P. Sahay, R. Nath, Al-doped ZnO thin films as methanol sensors. Sensors Actuators B Chem. 134(2), 654–659 (2008)

    Article  CAS  Google Scholar 

  20. J. Lagowski, E. Sproles Jr., H. Gatos, Quantitative study of the charge transfer in chemisorption; oxygen chemisorption on ZnO. J. Appl. Phys. 48(8), 3566–3575 (1977)

    Article  CAS  Google Scholar 

  21. S.R. Morrison, Mechanism of semiconductor gas sensor operation. Sensors Actuators 11(3), 283–287 (1987)

    Article  CAS  Google Scholar 

  22. Y. Wang, Q. Mu, G. Wang, Z. Zhou, Sensing characterization to nh3 of nanocrystalline sb-doped SnO2 synthesized by a nonaqueous sol-gel route. Sensors Actuators B Chem. 145(2), 847–853 (2010)

    Article  CAS  Google Scholar 

  23. P. Romppainen, V. Lantto, The effect of microstructure on the height of potential energy barriers in porous tin dioxide gas sensors. J. Appl. Phys. 63(10), 5159–5165 (1988)

    Article  CAS  Google Scholar 

  24. P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, G. Lu, N. Yamazoe, Cu-doped \(\alpha\)-fe2o3 hierarchical microcubes: synthesis and gas sensing properties. Sensors Actuators B Chem. 193, 616–622 (2014)

    Article  CAS  Google Scholar 

  25. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sensors Actuators B Chem. 5(1–4), 7–19 (1991)

    Article  CAS  Google Scholar 

  26. F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 6(83), 79343–79349 (2016)

    Article  CAS  Google Scholar 

  27. Y. Wang, S. Wang, H. Zhang, X. Gao, J. Yang, L. Wang, Brookite TiO2 decorated \(\alpha\)-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application. J. Mater. Chem. A 2(21), 7935–7943 (2014)

    Article  CAS  Google Scholar 

  28. S. Ameen, M.S. Akhtar, H.-K. Seo, Y.S. Kim, H.S. Shin, Influence of sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem. Eng. J. 187, 351–356 (2012)

    Article  CAS  Google Scholar 

  29. M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, R. Ghosh, Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C 120(5), 3019–3025 (2016)

    Article  CAS  Google Scholar 

  30. M. Xu, Q. Li, Y. Ma, H. Fan, Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, ac and dc electrical behaviors. Sensors Actuators B Chem. 199, 403–409 (2014)

    Article  CAS  Google Scholar 

  31. K. Shingange, Z. Tshabalala, O. Ntwaeaborwa, D. Motaung, G. Mhlongo, Highly selective NH3 gas sensor based on au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127–138 (2016)

    Article  CAS  Google Scholar 

  32. Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, W. Yu, Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21(28), 285501 (2010)

    Article  Google Scholar 

  33. S. Bai, T. Guo, Y. Zhao, J. Sun, D. Li, A. Chen, C.C. Liu, Sensing performance and mechanism of Fe-doped ZnO microflowers. Sensors Actuators B Chem. 195, 657–666 (2014)

    Article  CAS  Google Scholar 

  34. M. Yin, S. Liu, One-pot synthesis of Co-doped ZnO hierarchical aggregate and its high gas sensor performance. Mater. Chem. Phys. 149, 344–349 (2015)

    Article  Google Scholar 

  35. H. Gong, J. Hu, J. Wang, C. Ong, F. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for Co. Sensors Actuators B Chem. 115(1), 247–251 (2006)

    Article  CAS  Google Scholar 

  36. O. Lupan, T. Pauporté, B. Viana, V. Ursaki, I. Tiginyanu, V. Sontea, L. Chow, Uv-blue and green electroluminescence from Cu-doped ZnO nanorod emitters hydrothermally synthesized on p-GaN. J. Nanoelectron. Optoelectron. 7(7), 712–718 (2012)

    Article  CAS  Google Scholar 

  37. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B.R. Cuenya, I. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors Actuators A Phys. 189, 399–408 (2013)

    Article  CAS  Google Scholar 

  38. A.J. Kulandaisamy, C. Karthek, P. Shankar, G.K. Mani, J.B.B. Rayappan, Tuning selectivity through cobalt doping in spray pyrolysis deposited ZnO thin films. Ceram. Int. 42(1), 1408–1415 (2016)

    Article  CAS  Google Scholar 

  39. Z. Ma, F. Ren, X. Ming, Y. Long, A.A. Volinsky, Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12(1), 196 (2019)

    Article  CAS  Google Scholar 

  40. M. Öztas, M. Bedir, Thickness dependence of structural, electrical and optical properties of sprayed ZnO:Cu films. Thin Solid Films 516(8), 1703–1709 (2008)

    Article  Google Scholar 

  41. X. Zhou, Y. Wang, J. Wang, Z. Xie, X. Wu, N. Han, Y. Chen, Amplifying the signal of metal oxide gas sensors for low concentration gas detection. IEEE Sensors J. 17(9), 2841–2847 (2017)

    Article  CAS  Google Scholar 

  42. S.K. Jha, C.P. Liu, Z.H. Chen, K.J. Chen, I. Bello, J.A. Zapien, W. Zhang, S.-T. Lee, Integrated nanorods and heterostructure field effect transistors for gas sensing. J. Phys. Chem. C 114(17), 7999–8004 (2010)

    Article  CAS  Google Scholar 

  43. Y.-W. Jang, J. Kang, J.-W. Jo, Y.-H. Kim, J. Kim, S.K. Park, Improved dynamic responses of room-temperature operable field-effect-transistor gas sensors enabled by programmable multi-spectral ultraviolet illumination. Sensors Actuators B Chem. 342, 130058 (2021)

    Article  CAS  Google Scholar 

  44. N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, C. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  45. C. Sankar, V. Ponnuswamy, M. Manickam, R. Suresh, R. Mariappan, P. Vinod, Structural, morphological, optical and gas sensing properties of pure and Ce doped SnO2 thin films prepared by jet nebulizer spray pyrolysis (JNSP) technique. J. Mater. Sci. Mater. Electron. 28(6), 4577–4585 (2017)

    CAS  Google Scholar 

  46. P. Labhane, V. Huse, L. Patle, A. Chaudhari, G. Sonawane et al., Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study. J. Mater. Sci. Chem. Eng. 3(07), 39 (2015)

    Article  CAS  Google Scholar 

  47. Z. Liu, L. Yu, F. Guo, S. Liu, L. Qi, M. Shan, X. Fan, Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated RGO nanosheets. Appl. Surf. Sci. 423, 721–727 (2017)

    Article  CAS  Google Scholar 

  48. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, pp. 387–409. Springer, Berlin (1912). https://doi.org/10.1007/978-3-662-33915-2-7

  49. J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978)

    Article  CAS  Google Scholar 

  50. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Character. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  51. B. Kulyk, B. Sahraoui, V. Figà, B. Turko, V. Rudyk, V. Kapustianyk, Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films. J. Alloys Compd. 481(1–2), 819–825 (2009)

    Article  CAS  Google Scholar 

  52. I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen et al., Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 1, 1–20 (2013)

    Google Scholar 

  53. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology 14(1), 11 (2002)

    Article  Google Scholar 

  54. M. Koyano, P. QuocBao, L.T. ThanhBinh, L. HongHa, N. NgocLong, S. Katayama, Photoluminescence and raman spectra of ZnO thin films by charged liquid cluster beam technique. Physica Status Solidi (A) 193(1), 125–131 (2002)

    Article  CAS  Google Scholar 

  55. H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi, R. Schneider, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B Environ. 185, 11–21 (2016)

    Article  CAS  Google Scholar 

  56. H. Ma, L. Yue, C. Yu, X. Dong, X. Zhang, M. Xue, X. Zhang, Y. Fu, Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. J. Mater. Chem. 22(45), 23780–23788 (2012)

    Article  CAS  Google Scholar 

  57. W. Liu, X. Tang, Z. Tang, F. Chu, T. Zeng, N. Tang, Role of oxygen defects in magnetic property of Cu doped ZnO. J. Alloys Compd. 615, 740–744 (2014)

    Article  CAS  Google Scholar 

  58. S. Meti, M.R. Rahman, M.I. Ahmad, K.U. Bhat, Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties. Appl. Surf. Sci. 451, 67–75 (2018)

    Article  CAS  Google Scholar 

  59. S. Vanalakar, A. Kamble, S. Shin, S. Mali, G. Agawane, V. Patil, J. Kim, P. Patil, J. Kim, Simplistic toxic to non-toxic hydrothermal route to synthesize Cu2ZnSnS4 nanoparticles for solar cell applications. Sol. Energy 122, 1146–1153 (2015)

    Article  CAS  Google Scholar 

  60. A. Kadam, T.G. Kim, D.S. Shin, K. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J. Alloys Compd. 710, 102–113 (2017)

    Article  CAS  Google Scholar 

  61. A. Aravind, M. Jayaraj, M. Kumar, R. Chandra, Optical and magnetic properties of copper doped ZnO nanorods prepared by hydrothermal method. J. Mater. Sci. Mater. Electron. 24(1), 106–112 (2013)

    CAS  Google Scholar 

  62. D.D. Thongam, J. Gupta, N.K. Sahu, D. Bahadur, Investigating the role of different reducing agents, molar ratios, and synthesis medium over the formation of ZnO nanostructures and their photo-catalytic activity. J. Mater. Sci. 53(2), 1110–1122 (2018)

    Article  CAS  Google Scholar 

  63. S. Liu, H. Sun, A. Suvorova, S. Wang, One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chem. Eng. J. 229, 533–539 (2013)

    Article  CAS  Google Scholar 

  64. N. Song, H. Fan, H. Tian, Reduced graphene oxide/ZnO nanohybrids: metallic Zn powder induced one-step synthesis for enhanced photocurrent and photocatalytic response. Appl. Surf. Sci. 353, 580–587 (2015)

    Article  CAS  Google Scholar 

  65. H.S. Hassan, A. Kashyout, H. Soliman, M. Uosif, N. Afify, Influence of reaction time, reducing agent and zinc precursors on the morphological structures of zinc oxide. Anglisticum J. Assoc. Inst. English Lang. Am. Stud. (2016). https://doi.org/10.0001/(AJ).V3I0.707.G85710.0001/(AJ).V3I0.707.G857

  66. R. Raji, K. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2(1), 51–58 (2017)

    Google Scholar 

  67. C. Xia, F. Wang, C. Hu, Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. J. Alloys Compd. 589, 604–608 (2014)

    Article  CAS  Google Scholar 

  68. M.D. McCluskey, S. Jokela, Defects in ZnO. J. Appl. Phys. 106(7), 10 (2009)

    Article  Google Scholar 

  69. Y. Wang, S.P. Lau, X. Zhang, H. Hng, H. Lee, S.F. Yu, B. Tay, Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. J. Cryst. Growth 259(4), 335–342 (2003)

    Article  CAS  Google Scholar 

  70. C. Chandrinou, N. Boukos, C. Stogios, A. Travlos, PL study of oxygen defect formation in ZnO nanorods. Microelectron. J. 40(2), 296–298 (2009)

    Article  CAS  Google Scholar 

  71. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, Uv-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J. 183, 238–243 (2012)

    Article  CAS  Google Scholar 

  72. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5(1), 590–596 (2011)

    Article  CAS  Google Scholar 

  73. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured zno thin films based NO2 gas sensor via silar technique. Sensors Actuators B Chem. 239, 1185–1193 (2017)

    Article  CAS  Google Scholar 

  74. J. Sounder, P. Gowthaman, M. Venkatachalam, M. Saroja, Resistivity and response time of undoped ZnO and Cu doped ZnO thin films for NO2 gas sensing. Int. J. Recent Technol. Eng. 7(6S3), 245–250 (2019)

    Google Scholar 

  75. Y. Navale, S. Navale, F. Stadler, N. Ramgir, V. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors. Ceram. Int. 45(2), 1513–1522 (2019)

    Article  CAS  Google Scholar 

  76. J. Li, X. Liu, J. Sun, One step solvothermal synthesis of urchin-like ZnO nanorods/graphene hollow spheres and their NO2 gas sensing properties. Ceram. Int. 42(1), 2085–2090 (2016)

    Article  CAS  Google Scholar 

  77. G. Varma et al., Synthesis of CuO-ZnO/RGO ternary composites for superior NO2 gas sensor at room temperature. Mater. Res. Expr. 6(3), 035011 (2018)

    Article  Google Scholar 

  78. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sensors Actuators B Chem. 107(1), 379–386 (2005)

    Article  CAS  Google Scholar 

  79. L. Van Duy, T.T. Nguyet, C.M. Hung, D.T.T. Le, N. Van Duy, N.D. Hoa, F. Biasioli, M. Tonezzer, C. Di Natale, Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: Nanosheets and nanoplates. Ceram. Int. 47(20), 28811–28820 (2021)

    Article  Google Scholar 

  80. S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors Actuators B Chem. 202, 272–278 (2014)

    Article  CAS  Google Scholar 

  81. P. Cao, Y. Cai, D. Pawar, S. Navale, C.N. Rao, S. Han, W. Xu, M. Fang, X. Liu, Y. Zeng et al., Down to ppb level NO2 detection by ZnO/RGO heterojunction based chemiresistive sensors. Chem. Eng. J. 401, 125491 (2020)

    Article  CAS  Google Scholar 

  82. N. Harale, A. Kamble, N. Tarwal, I. Mulla, V. Rao, J. Kim, P. Patil, Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: effect of anion generating agents. Ceram. Int. 42(11), 12807–12814 (2016)

    Article  CAS  Google Scholar 

  83. V. Patil, S. Vanalakar, N. Tarwal, A. Patil, T. Dongale, J. Kim, P. Patil, Construction of Cu doped ZnO nanorods by chemical method for low temperature detection of no2 gas. Sensors Actuators A Phys. 299, 111611 (2019)

    Article  CAS  Google Scholar 

  84. C. Zou, F. Liang, S. Xue, Synthesis and oxygen vacancy related NO2 gas sensing properties of ZnO: Co nanorods arrays gown by a hydrothermal method. Appl. Surf. Sci. 353, 1061–1069 (2015)

    Article  CAS  Google Scholar 

  85. R.S. Ganesh, V. Patil, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P. Patil, Y. Hayakawa, Growth of Fe doped ZnO nanoellipsoids for selective NO2 gas sensing application. Chem. Phys. Lett. 734, 136725 (2019)

    Article  Google Scholar 

  86. T. Tesfamichael, C. Cetin, C. Piloto, M. Arita, J. Bell, The effect of pressure and w-doping on the properties of ZnO thin films for NO2 gas sensing. Appl. Surf. Sci. 357, 728–734 (2015)

    Article  CAS  Google Scholar 

  87. A. Umar, M. Alduraibi, O. Al-Dossary, NOx gas sensing properties of Fe-doped ZnO nanoparticles. Sci. Adv. Mater. 12(6), 908–914 (2020)

    Article  CAS  Google Scholar 

  88. Y. Navale, S. Navale, M. Chougule, N. Ramgir, V. Patil, NO2 gas sensing properties of heterostructural Cuo nanoparticles/ZnO nanorods. J. Mater. Sci. Mater. Electron. 32, 18178–18191 (2021)

  89. S. Vanalakar, M. Gang, V. Patil, T. Dongale, P. Patil, J. Kim, Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas. J. Electron. Mater. 48(1), 589–595 (2019)

    Article  CAS  Google Scholar 

  90. Y. Hunge, A. Yadav, V. Mathe, Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 731, 136582 (2019)

    Article  CAS  Google Scholar 

  91. Y. Hunge, A. Yadav, B. Mohite, V. Mathe, C. Bhosale, Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J. Mater. Sci. Mater. Electron. 29(5), 3808–3816 (2018)

    CAS  Google Scholar 

  92. R.J.B. Balaguru, B. Jeyaprakash, Mimic of a gas sensor, metal oxide gas sensing mechanism, factors influencing the sensor performance and role of nanomaterials based gas sensors, in NPTEL – Electrical & Electronics Engineering – Semiconductor Nanodevices, pp. 1–30 (2004)

  93. W. Dai, X. Pan, C. Chen, S. Chen, W. Chen, H. Zhang, Z. Ye, Enhanced UV detection performance using a cu-doped zno nanorod array film. RSC Adv. 4(60), 31969–31972 (2014)

    Article  CAS  Google Scholar 

  94. C. West, D. Robbins, P. Dean, W. Hayes, The luminescence of copper in zinc oxide. Physica B + C 116(1–3), 492–499 (1983)

    Article  CAS  Google Scholar 

  95. Y. Hunge, M. Mahadik, V. Mohite, S. Kumbhar, N. Deshpande, K. Rajpure, A. Moholkar, P. Patil, C. Bhosale, Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films. J. Mater. Sci. Mater. Electron. 27(2), 1629–1635 (2016)

    CAS  Google Scholar 

  96. H. Gómez-Pozos, E.J.L. Arredondo, A. MaldonadoÁlvarez, R. Biswal, Y. Kudriavtsev, J.V. Pérez, Y.L. Casallas-Moreno, M.D.L.L. OlveraAmador, Cu-doped ZnO thin films deposited by a sol-gel process using two copper precursors: gas-sensing performance in a propane atmosphere. Materials 9(2), 87 (2016)

    Article  Google Scholar 

  97. V. Van Quang, N. Van Dung, N. Sy Trong, N. Duc Hoa, N. Van Duy, N. Van Hieu, Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105(1), 013107 (2014)

    Article  Google Scholar 

  98. H. Abdollahi, M. Samkan, M.M. Hashemi, Fabrication of RGO nano-sheets wrapped on Ni doped ZnO nanowire p–n heterostructures for hydrogen gas sensing. New J. Chem. 43(48), 19253–19264 (2019)

    Article  Google Scholar 

  99. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137–3140 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the core research grant (CRG) provided by Science and Engineering Research Board (SERB) (CRG/2019/004990).

Funding

This study was funded by Science and Engineering Research Board (SERB).

Author information

Authors and Affiliations

Authors

Contributions

Mrudul Modak contributed to the conceptualization of this study, methodology, formal analysis, writing—original draft and Investigation. Sunil Mahajan contributed to conceptualization, methodology, formal analysis and investigation. Manish Shinde and Sunit Rane supervised the study. Shweta Jagtap contributed to the conceptualization, methodology, supervision, writing—review and editing and project administration.

Corresponding author

Correspondence to Shweta Jagtap.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

None.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, M., Mahajan, S., Shinde, M. et al. Sensitive, selective and low detection limit of NO2 gas sensor based on Cu/ZnO/rGO nanocomposites. J Mater Sci: Mater Electron 33, 26205–26224 (2022). https://doi.org/10.1007/s10854-022-09306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09306-2

Navigation