Skip to main content
Log in

Ultra-low concentration detection of NH3 using rGO/Cu2O nanocomposites at low temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It has been a major challenge to develop a gas sensor capable of detecting ppb-level ammonia (NH3) with high response at low temperature. Herein, Cu2O nanoblocks uniformly dispersed on wrinkle structure of reduced graphene oxide (rGO)-based nanocomposites synthesized via a water bath heating method. Characterizations results illustrate that Cu2O nanoblocks are evenly dispersed on the surface of rGO. Additionally, The gas sensing experiments displayed that the as-obtained rGO/Cu2O nanocomposites exhibited the extremely fast response (1s) and recovery time (1s), high-performance gas sensing property for ultra-low concentration (5 ppb) NH3 detections at low temperature (80 °C), which owe to the mesoporous structure, excellent charge carriers transport properties and large specific surface area. Meanwhile, the probable enhancing mechanism of rGO/Cu2O nanocomposites was discussed as well. Therefore, it is expected that rGO/Cu2O nanocomposites with remarkable sensing performance for the future development in monitoring and detecting NH3 at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Gao, T. Zhang, An overview: facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B 277, 604–633 (2018)

    Article  CAS  Google Scholar 

  2. H.Y. Gao, J. Guo, Y.W. Li, C.L. Xie, X. Li, L. Liu, Y. Chen, P. Sun, F.M. Liu, X. Yan, F.M. Liu, G.Y. Lu, Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens. Actuators B 284, 305–315 (2019)

    Article  CAS  Google Scholar 

  3. Y.S. Xu, L.L. Zheng, C. Yang, X.H. Liu, J. Zhang, Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B Chem. 304, 127237 (2020)

    Article  CAS  Google Scholar 

  4. D.Z. Zhang, Z.L. Wu, X.Q. Zong, Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32–41 (2019)

    Article  CAS  Google Scholar 

  5. M.D. Das, SarkarOne-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram. Int. 43, 11123–11131 (2017)

    Article  CAS  Google Scholar 

  6. A.M. Soleimanpour, A.H. Jayatissa, G. Sumanasekera, Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013)

    Article  CAS  Google Scholar 

  7. P. Dhivya, A.K. Prasad, M. Sridharan, Nanostructured TiO2 films: enhanced NH3 detection at room temperature. Ceram. Int. 40, 409–415 (2014)

    Article  CAS  Google Scholar 

  8. H.H. Yan, P. Song, S. Zhang, Z.X. Yang, Q. Wang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 662, 118–125 (2016)

    Article  CAS  Google Scholar 

  9. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713–730 (2019)

    Article  CAS  Google Scholar 

  10. S.R. Ryu, S.D.G. Ram, H.D. Cho, D.J. Lee, T.W. Kang, Y. Woo, Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod. Nanoscale 7, 11115–11122 (2015)

    Article  CAS  Google Scholar 

  11. N. Yu, H. Zhang, S.D. Davidson, J.M. Sun, Y. Wang, Effect of ZnO facet on ethanol steam reforming over Co/ZnO. Catal. Commun. 73, 93–97 (2016)

    Article  CAS  Google Scholar 

  12. A. Sharma, P. Bhojane, A.K. Rana, Y. Kumar, P.M. Shirage, Mesoporous nickel cobalt hydroxide/oxide as an excellent room temperature ammonia sensor. Scr. Mater. 128, 65–68 (2017)

    Article  CAS  Google Scholar 

  13. S. Zhang, P. Zhang, A. Xie, S. Li, F. Huang, Y. Shen, A Novel 2D porousprintfabric-like α-Fe2O3 sheet with high performance as the anode material forlithium-ion battery. Electrochim. Acta. 212, 912–920 (2016)

    Article  CAS  Google Scholar 

  14. H. Manisha, P.D. Priya Swetha, Y.B. Shim, K.S. Prasad, Microwave assisted synthesis of hybrid Cu2O microcubes for photocatalysis and electrocatalysis. Mater. Today 5, 16390–16393 (2018)

    CAS  Google Scholar 

  15. Y.S. Xu, W. Zheng, X.H. Liu, L.Q. Zhang, L.L. Zheng, C. Yang, N. Pinna, J. Zhang, Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 7, 1519 (2020)

    Article  CAS  Google Scholar 

  16. G.L. Lei, C.M. Lou, X.H. Liu, J.Y. Xie, Z.S. Li, W. Zheng, J. Zhang, Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuators B: Chem. 341, 129996 (2021)

    Article  CAS  Google Scholar 

  17. G.Q. Liu, Y. Zhou, C. Zou, X.Y. Zhu, Y.C. Guo, Heat-pulse assisted NH3 gas sensing based on cuprous oxide nanocomposites anchored on reduced graphene oxide nanosheets. Mater. Electron. 29, 3317–3325 (2018)

    Article  CAS  Google Scholar 

  18. L.Y. Hong, H.W. Ke, C.E. Tsai, H.N. Lin, Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Mater. Lett. 185, 243–246 (2016)

    Article  CAS  Google Scholar 

  19. S.X. Cao, T. Han, L.L. Peng, C. Zhao, J. Wang, Hydrothermal synthesis, characterization and gas sensing properties of novel Cu2O open hollow nanospheres. Ceram. Int. 43, 4721–4724 (2017)

    Article  CAS  Google Scholar 

  20. S.Q. Zhou, M.P. Chen, Q.J. Lu, J. Hu, H.P. Wang, K. Li, K.J. Li, J. Zhang, Z.Q. Zhu, Q.J. Liu, Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Mater. Lett. 247, 15–18 (2019)

    Article  CAS  Google Scholar 

  21. M.A. Worsley, S.O. Kucheyev, H.E. Mason, M.D. Merrill, B.P. Mayer, J. Lewicki, C.A. Valdez, M.E. Suss, M. Stadermann, P.J. Pauzauskie, J.H. Satcher Jr., J. Biener, T.F. Baumann, Mechanically robust 3D graphene macroassembly with high surface area. Chem. Commun. 48, 8428–8430 (2012)

    Article  CAS  Google Scholar 

  22. H.D. Pham, V.H. Pham, T.V. Cuong, T.D.N. Phan, J.S. Chung, E.W. Shin, S. Kim, Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem. Commun. 47, 9672–9674 (2011)

    Article  CAS  Google Scholar 

  23. S. Yi, Q. Fang, B.L. Chen, Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ. Sci. Technol. 49, 67–84 (2015)

    Article  CAS  Google Scholar 

  24. Q.J. Xiang, B. Cheng, J.G. Yu, Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54, 2–19 (2015)

    Article  CAS  Google Scholar 

  25. J. Zhang, L.F. Qi, J.R. Ran, J.G. Yu, S.Z. Qiao, Ternary NiS/ZnxCd1−xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv. Energy Mater. 4, 1301925 (2014)

    Article  CAS  Google Scholar 

  26. J. Zhang, D.W. Zeng, H. Wang, Z.Y. Qin, A.M. Pang, C.S. Xie, Highly responsive chemical sensing on NO2 at room temperature based on reduced porous graphene. Mater. Lett. 204, 27–30 (2017)

    Article  CAS  Google Scholar 

  27. C. Zhao, X. Wu, P. Li, C. Zhao, X. Qian, Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim. Acta. 184, 2341–2348 (2017)

    Article  CAS  Google Scholar 

  28. Y. Zhou, X. Lin, Y. Wang, G. Liu, X. Zhu, Y. Huang, Y. Guo, C. Gao, M. Zhou, Study on gas sensing of reduced graphene oxide/ZnO thin film at room temperature. Sens. Actuators B. 240, 870–880 (2017)

    Article  CAS  Google Scholar 

  29. J. Lee, A. Katoch, S. Choi, J. Kim, H.W. Kim, S.S. Kim, Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces 7, 3101–3109 (2015)

    Article  CAS  Google Scholar 

  30. R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid film. RSC Adv. 5(62), 50165–50173 (2015)

    Article  CAS  Google Scholar 

  31. H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu, X. Du, ZnO nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res. Lett 11, 1–8 (2016)

    Article  CAS  Google Scholar 

  32. X. Liu, J.S. Cui, J.B. Sun, X.T. Zhang, 3D graphene aerogel-supported SnO2 nano particles for efficient detection of NO2. RSC Adv. 4, 22601–22605 (2014)

    Article  CAS  Google Scholar 

  33. P. Song, D. Han, H.H. Zhang, J. Li, Z.X. Yang, Q. Wang, Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sens. Actuators B 196, 434–439 (2014)

    Article  CAS  Google Scholar 

  34. M. Liu, Z.Y. Wang, P. Song, Z.X. Yang, Q. Wang, Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators B Chem. 340, 129946 (2021)

    Article  CAS  Google Scholar 

  35. S.H. Liu, Y.S. Wei, J.S. Lu, Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts. Chemosphere 154, 118–123 (2016)

    Article  CAS  Google Scholar 

  36. T.K. Aparna, R. Sivasubramanian, M.A. Dar, One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Compd. 741, 1130–1141 (2018)

    Article  CAS  Google Scholar 

  37. Y.C. Pu, H.Y. Chou, W.S. Kuo, K.H. Wei, Y.J. Hsu, Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Appl. Catal. B 204, 21–32 (2017)

    Article  CAS  Google Scholar 

  38. A. Abulizi, G.H. Yang, J.J. Zhu, One-step simple sonochemical fabrication and photocatalytic properties of Cu2O-rGO composites. Ultrason. Sonochem. 21, 129–135 (2014)

    Article  CAS  Google Scholar 

  39. J.Y. Cai, W.J. Liu, Z.H. Li, One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Appl. Surf. Sci. 358, 146–151 (2015)

    Article  CAS  Google Scholar 

  40. K. Wang, X.M. Dong, C.J. Zhao, X.Z. Qian, Y.L. Xu, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 152, 433–442 (2015)

    Article  CAS  Google Scholar 

  41. V.D. Botcha, D.S. Sutar, S.S. Major, Study of GO-Cu2O and RGO-Cu nanocomposite monolayer sheets prepared by modified Langmuir Blodgett route. J. Phys. Chem. Solids 118, 158–165 (2018)

    Article  CAS  Google Scholar 

  42. T.K. Aparna, R. Sivasubramanian, Mushtaq Ahmad Dar, One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J. Alloys Compd. 741, 1130–1141 (2018)

    Article  CAS  Google Scholar 

  43. H.J. Huang, J.Z. Zhang, L. Jiang, Z.G. Zang, Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J. Alloys Compd. 718, 112–115 (2017)

    Article  CAS  Google Scholar 

  44. J.S. Kumar, M. Jana, P. Khanra, P. Samanta, T. Kuila, One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim. Acta 193, 104–115 (2016)

    Article  CAS  Google Scholar 

  45. Z.Q. Yang, X.P. Hao, S.G. Chen, Z.Q. Ma, Z.H. Guo, Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J. Colloid Interface Sci. 533, 13–23 (2019)

    Article  CAS  Google Scholar 

  46. K. Sharma, K. Maiti, N.H. Kim, D. Hui, J.H. Lee, Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity. Composites B 138, 35–44 (2018)

    Article  CAS  Google Scholar 

  47. S. Shahrokhian, S. Rezaee, Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 259, 36–47 (2018)

    Article  CAS  Google Scholar 

  48. X. Jie, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu, C. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens. Actuators B 220, 201–209 (2015)

    Article  CAS  Google Scholar 

  49. F. Yan, G. Shen, X. Yang, T. Qi, J. Sun, X. Li, M. Zhang, Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Appl. Surf. Sci. 479, 1141–1147 (2019)

    Article  CAS  Google Scholar 

  50. Q. Feng, X. Li, J. Wang, A.M. Gaskov, Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuators B 222, 864–870 (2016)

    Article  CAS  Google Scholar 

  51. Y.L. Wang, J. Liu, X.B. Cui, Y. Gao, J. Ma, Y.F. Sun, P. Sun, F.M. Liu, X.S. Liang, T. Zhang, G.Y. Lu, NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens. Actuators B 238, 473–481 (2017)

    Article  CAS  Google Scholar 

  52. F. Shao, F. Hernández-Ramíreza, J.D. Prades, C. Fàbrega, T. Andreu, J.R. Morante, Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Appl. Surf. Sci. 311, 177–181 (2014)

    Article  CAS  Google Scholar 

  53. S. Kumar, A. Singh, R. Singh, S. Singh, P. Kumar, R. Kumar, Facile h-MoO3 synthesis for NH3 gas sensing application at moderate operating temperature. Sensor Actuators B-Chem 325, 128974 (2020)

    Article  CAS  Google Scholar 

  54. V. Haridas, A. Sukhananazerin, J. Mary Sneha, B. Pullithadathil, B. Narayanan, Appl. Surf. Sci. 517, 146158 (2020)

    Article  CAS  Google Scholar 

  55. T. Siciliano, M.D. Giulio, M. Tepore, E. Filippo, G. Micocci, A. Tepore, Ammonia sensitivity of rf sputtered tellurium oxide thin films. Sens. Actuators B Chem. 138, 550–555 (2009)

    Article  CAS  Google Scholar 

  56. J.N. Deng, R. Zhang, L.L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators B Chem. 209, 449–455 (2015)

    Article  CAS  Google Scholar 

  57. Y.L. Wang, J. Liu, X.B. Cui, Y. Gao, J. Ma, Y.F. Sun, P. Sun, F.M. Liu, X.S. Liang, T. Zhang, G.Y. Lu, NH3 gas sensing performance enhanced by Pt-loaded on mesoporousWO3. Sens. Actuators B 238, 473–481 (2017)

    Article  CAS  Google Scholar 

  58. S.Y. Gong, J.Y. Chen, X.F. Wu, N. Han, Y.F. Chen, In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catal. Commun. 106, 25–29 (2018)

    Article  CAS  Google Scholar 

  59. L.L. Sun, G.H. Wang, R.R. Hao, D.Y. Han, S. Cao, Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Appl. Surf. Sci. 358, 91–99 (2015)

    Article  CAS  Google Scholar 

  60. M.S. Park, K.H. Kim, M.J. Kim, Y.S. Lee, NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A 490, 104–109 (2016)

    Article  CAS  Google Scholar 

  61. X. Huang, N. Hu, L. Zhang, L. Wei, H. Wei, Y. Zhang, The NH3 sensing properties of gas sensors based on aniline reduced graphene oxide. Synth. Met. 185, 25–30 (2013)

    Article  CAS  Google Scholar 

  62. H.W. Kima, Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, S.S. Kim, Synthesis of zinc oxide semiconductors-graphene nanocomposites bymicrowave irradiation for application to gas sensors. Sens. Actuators B 249, 590–601 (2017)

    Article  CAS  Google Scholar 

  63. Y. Zhang, Q. Wang, D. Liu, Q. Wang, T. Li, Z. Wang, Cu2O-BiOI isotype (p-p) heterojunction: boosted visible-light-driven photoelectrochemical activity for non-enzymatic H2O2 sensing. Appl. Surf. Sci. 521, 146434 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 61102006), and Natural Science Foundation of Shandong Province, China (No. ZR2018LE006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sima, Z., Ma, Z., Song, P. et al. Ultra-low concentration detection of NH3 using rGO/Cu2O nanocomposites at low temperature. J Mater Sci: Mater Electron 32, 22617–22628 (2021). https://doi.org/10.1007/s10854-021-06746-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06746-0

Navigation