Skip to main content
Log in

Nanostructured ternary compound Hg(Cd)Te-based composite formed by ion bombardment Ag+ for hybrid photonics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The results of a study of composite structures p-(Ag2O-Hg1−xCdxTe (x ~ 0.223)) based on nanosized silver oxide inclusions in a semiconductor matrix are presented. The HgCdTe layers were implanted with Ag+ silver ions. The modification was carried out by oblique (θ = 45°, 30°) ion bombardment. The morphology of the (111) Hg1−xCdxTe (x ~ 0.223) surface of epitaxial layers was studied under ion irradiation with an energy of 140 keV and a flux density of 4.8 × 1013 cm−2 at T = 300 K by atomic force microscopy. The low-temperature photoluminescence, Raman scattering, surface photovoltage, and impedance spectroscopy techniques were also used. The results of impedance spectroscopy showed the passive inductive properties of the composite structures investigated. The surface photovoltage investigation indicates that the ion-synthesized Ag2O/Hg(Cd)Te composite system can be a candidate for a multispectral (IR and sub-THz) detection system. A new mechanism for sub-THz detected by a synthesized semiconductor composite structure in which the metamaterial absorber is integrated directly into the MWIR semiconductor is presented. The photonic properties of the synthesized composite are discussed in the frame of the "antenna efficiency" paradigm based on using a metamaterial unit cell with the functions of a parasitic resonant element in the near field of the electrical small antennas. It is assumed that the nanostructured surface with silver inclusions plays a role of a small metamaterial-inspired resonant near-field parasitic antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. V.C. Coffey, Opt. Photon. News 7(6), 20 (2015). https://doi.org/10.1364/OPN.23.4.000018

    Article  Google Scholar 

  2. R. Appleby, R.N. Anderton, Proc. IEEE 95(8), 1683 (2007). https://doi.org/10.1109/JPROC.2007.898832

    Article  CAS  Google Scholar 

  3. I. Degli-Eredi et al., J. Opt. 23(4), 043001 (2021). https://doi.org/10.1088/2040-8986/abc312

    Article  Google Scholar 

  4. F. Teng et al., Adv. Mater. 30(35), 1706262 (2018). https://doi.org/10.1002/adma.201706262

    Article  CAS  Google Scholar 

  5. X. Zhao et al., Nanomaterials 11(5), 1125 (2021). https://doi.org/10.3390/nano11051125

    Article  CAS  Google Scholar 

  6. M.N. Abedin et al., Infrared Spaceborne Remote Sens. XII 30(35), 1706262 (2004). https://doi.org/10.1117/12.559917

    Article  CAS  Google Scholar 

  7. A. Rogalski, P. Martyniuk, M. Kopytko, Appl. Phys. Rev. 4(3), 031304 (2017). https://doi.org/10.1063/1.4999077

    Article  CAS  Google Scholar 

  8. M. Razeghi, A. Dehzangi, Results Opt. 2, 100054 (2021). https://doi.org/10.1016/j.rio.2021.100054

    Article  Google Scholar 

  9. Rahmlow Jr., D. Thomas, et al., Infrared Technol. Appl. 72, 859 (2009). https://doi.org/10.1117/12.820059

    Article  CAS  Google Scholar 

  10. Liu, Xinya et al., Adv. Funct. Mater. 31(20), 2101480 (2021). https://doi.org/10.1002/adfm.202101480

    Article  CAS  Google Scholar 

  11. S.I. Yushchuk, S.O. Yuryev, O.B. Bilenka et al., Metallofiz Noveishie Tekhnol 40(9), 1247 (2018). https://doi.org/10.15407/mfint.40.09.1247

    Article  CAS  Google Scholar 

  12. A. Rogalski, HgCdTe photodetectors. Mid-infrared Optoelectronics (Woodhead Publishing, Cambridge, 2020), pp.235–335

    Book  Google Scholar 

  13. S. Ruffenach et al., APL Mater. 5(7), 035503–035511 (2017). https://doi.org/10.1063/1.4977781

    Article  CAS  Google Scholar 

  14. D. Yavorskiy, K. Karpierz, M. Baj et al., Sensors 18(12), 4341 (2018). https://doi.org/10.3390/s18124341

    Article  CAS  Google Scholar 

  15. T. Kryshtab, R.K. Savkina, A.B. Smirnov, M. Kladkevich et al., Phys. Status Solidi 13(7–9), 639 (2016). https://doi.org/10.1002/pssc.201510278

    Article  CAS  Google Scholar 

  16. A.B. Smirnov, in Solid State Composites and Hybrid Systems Fundamentals and Applications. ed. by R. Savkina, L. Khomenkova (CRC Press, Florida, 2018), pp.125–150

    Google Scholar 

  17. A.B. Smirnov, R.K. Savkina, in Nanophysics, Nanomaterials, Interface Studies and Applications. ed. by O. Fesenko, L. Yatsenko (Springer, New York, 2017), pp.405–416

    Chapter  Google Scholar 

  18. A.B. Smirnov, R.K. Savkina, R.S. Udovytska et al., Nanoscale Res. Lett. 12, 320 (2017). https://doi.org/10.1186/s11671-017-2093-x

    Article  CAS  Google Scholar 

  19. C. Jagadish, S. Gunapala, D. Rhiger, Advances in Infrared Photodetectors, 1st edn. (Elsevier, San Diego, 2011), pp.45–56

    Google Scholar 

  20. A. Erentok, R.W. Ziolkowski, IEEE Trans. Antennas Propag. 56(3), 691 (2008). https://doi.org/10.1109/TAP.2008.916949

    Article  Google Scholar 

  21. A.B. Smirnov et al., J. Phys. 60(10), 1055 (2019). https://doi.org/10.15407/ujpe60.10.1055

    Article  Google Scholar 

  22. F.F. Sizov et al., Phys. Solid State 56, 2160 (2014). https://doi.org/10.1134/S1063783414110286

    Article  CAS  Google Scholar 

  23. A.B. Smirnov, R.K. Savkina, I.M. Nasieka et al., J. Mater. Sci. 29, 15708 (2018). https://doi.org/10.1007/s10854-018-9177-y

    Article  CAS  Google Scholar 

  24. D. Ben-Avraham, S. Havlin, J. Phys. A 15(12), L691 (1982). https://doi.org/10.1088/0305-4470/15/12/007

    Article  Google Scholar 

  25. G. Carter, J. Phys. D 34(3), 1 (2001). https://doi.org/10.1088/0022-3727/34/3/201

    Article  Google Scholar 

  26. P.M. Amirtharaj et al., Semicond. Sci. Technol. 5(3S), 68 (1990). https://doi.org/10.1088/0268-1242/5/3S/015

    Article  Google Scholar 

  27. A. Singh et al., Infrared Phys. Technol. 54(1), 44 (2011). https://doi.org/10.1016/j.infrared.2010.11.002

    Article  CAS  Google Scholar 

  28. D. Nam et al., Phys. Status Solidi 11(9–10), 1515 (2014). https://doi.org/10.1002/pssc.201300577

    Article  CAS  Google Scholar 

  29. T.M. Khan, T. Shahid, M. Zakria et al., Electron. Mater. Lett. 11(3), 366 (2015). https://doi.org/10.1007/s13391-015-4134-x

    Article  CAS  Google Scholar 

  30. G.I.N. Waterhouse, G.A. Bowmaker, J.B. Metson, Surf. Interface Anal. 33(5), 401 (2002). https://doi.org/10.1002/sia.1223

    Article  CAS  Google Scholar 

  31. I. Martina et al., Micro-Raman characterization of silver corrosion products: instrumental set up and reference database. E-Preserv. Sci. Morana. RTD Sloven. 9, 1 (2012)

    CAS  Google Scholar 

  32. V. Srihari et al., AIP Conf. Proc. 1349(1), 845 (2011). https://doi.org/10.1063/1.3606122

    Article  CAS  Google Scholar 

  33. M.T. Harrison et al., Mater. Sci. Eng. B 69, 353 (2000). https://doi.org/10.1016/S0921-5107(99)00254-8

    Article  Google Scholar 

  34. H. Chen et al., J. Fluoresc. 18(5), 801 (2008). https://doi.org/10.1007/s10895-007-0307-9

    Article  CAS  Google Scholar 

  35. F. Fabbri et al., Mater. Lett. 92, 397 (2013). https://doi.org/10.1016/j.matlet.2012.11.020

    Article  CAS  Google Scholar 

  36. D.E. Ramírez-Herrera et al., Microchim. Acta 184(7), 1997 (2017). https://doi.org/10.1007/s00604-017-2205-4

    Article  CAS  Google Scholar 

  37. T. Tsuruoka et al., Trans. Mater. Res. Soc. Jpn. 39(4), 481–484 (2014). https://doi.org/10.14723/tmrsj.39.481

    Article  CAS  Google Scholar 

  38. J. Zia, U. Riaz, ACS Omega 5(27), 16386 (2020). https://doi.org/10.1021/acsomega.0c00405

    Article  CAS  Google Scholar 

  39. T.S. Moss, Photoconductivity in the Elements (Butterworth, London, 1952), pp.31–34

    Google Scholar 

  40. N.R.C. Raju, K.J. Kumar, A. Subrahmanyam, J. Phys. D 42(13), 135411 (2009). https://doi.org/10.1088/0022-3727/42/13/135411

    Article  CAS  Google Scholar 

  41. H.A. Wheeler, Proc. IRE 35(12), 1479–1984 (1947). https://doi.org/10.1109/JRPROC.1947.226199

    Article  Google Scholar 

  42. L.J. Chu, J. Appl. Phys. 19(12), 1163 (1948). https://doi.org/10.1063/1.1715038

    Article  Google Scholar 

  43. P. Loghmannia, M. Manteghi, Broadband parametric impedance matching for small antennas using the bode-fano limit. arXiv Preprint arXiv (2019). https://doi.org/10.48550/arXiv.1907.11683

    Article  Google Scholar 

  44. M.S. Sim et al., Int. J. RF. Microw. Comput. Aided Eng. 28(7), e21473 (2018). https://doi.org/10.1002/mmce.21473

    Article  Google Scholar 

  45. C.C. Lin, P. Jin, R.W. Ziolkowski, IEEE Trans. Antennas Propag. 59(3), 714 (2010). https://doi.org/10.1109/JPROC.2010.2091610

    Article  Google Scholar 

  46. P. Xie et al., Research 7, 83251 (2019). https://doi.org/10.34133/2019/1021368

    Article  CAS  Google Scholar 

  47. Z.C. Shi et al., Appl. Phys. Lett. 99(3), 032903 (2011). https://doi.org/10.1063/1.3608156

    Article  CAS  Google Scholar 

  48. D. Vanmaekelbergh, P.E. De Jongh, Phys. Rev. (2000). https://doi.org/10.1103/PhysRevB.61.4699

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Armed Forces of Ukraine for the service and sacrifice

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RKS, RSU, SKG, SOY, YVM, and OBS contributed to the study's conception and design; read and approved the final manuscript; performed material preparation, data collection, and analysis; and commented on previous versions of the manuscript. The first draft of the manuscript was written by OBS.

Corresponding author

Correspondence to O. B. Smirnov.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, O.B., Savkina, R.K., Udovytska, R.S. et al. Nanostructured ternary compound Hg(Cd)Te-based composite formed by ion bombardment Ag+ for hybrid photonics. J Mater Sci: Mater Electron 33, 26178–26189 (2022). https://doi.org/10.1007/s10854-022-09304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09304-4

Navigation